MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmmulg Structured version   Visualization version   GIF version

Theorem clmmulg 22804
Description: The group multiple function matches the scalar multiplication function. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
clmmulg.1 𝑉 = (Base‘𝑊)
clmmulg.2 = (.g𝑊)
clmmulg.3 · = ( ·𝑠𝑊)
Assertion
Ref Expression
clmmulg ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ ℤ ∧ 𝐵𝑉) → (𝐴 𝐵) = (𝐴 · 𝐵))

Proof of Theorem clmmulg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6612 . . . . 5 (𝑥 = 0 → (𝑥 𝐵) = (0 𝐵))
2 oveq1 6612 . . . . 5 (𝑥 = 0 → (𝑥 · 𝐵) = (0 · 𝐵))
31, 2eqeq12d 2641 . . . 4 (𝑥 = 0 → ((𝑥 𝐵) = (𝑥 · 𝐵) ↔ (0 𝐵) = (0 · 𝐵)))
4 oveq1 6612 . . . . 5 (𝑥 = 𝑦 → (𝑥 𝐵) = (𝑦 𝐵))
5 oveq1 6612 . . . . 5 (𝑥 = 𝑦 → (𝑥 · 𝐵) = (𝑦 · 𝐵))
64, 5eqeq12d 2641 . . . 4 (𝑥 = 𝑦 → ((𝑥 𝐵) = (𝑥 · 𝐵) ↔ (𝑦 𝐵) = (𝑦 · 𝐵)))
7 oveq1 6612 . . . . 5 (𝑥 = (𝑦 + 1) → (𝑥 𝐵) = ((𝑦 + 1) 𝐵))
8 oveq1 6612 . . . . 5 (𝑥 = (𝑦 + 1) → (𝑥 · 𝐵) = ((𝑦 + 1) · 𝐵))
97, 8eqeq12d 2641 . . . 4 (𝑥 = (𝑦 + 1) → ((𝑥 𝐵) = (𝑥 · 𝐵) ↔ ((𝑦 + 1) 𝐵) = ((𝑦 + 1) · 𝐵)))
10 oveq1 6612 . . . . 5 (𝑥 = -𝑦 → (𝑥 𝐵) = (-𝑦 𝐵))
11 oveq1 6612 . . . . 5 (𝑥 = -𝑦 → (𝑥 · 𝐵) = (-𝑦 · 𝐵))
1210, 11eqeq12d 2641 . . . 4 (𝑥 = -𝑦 → ((𝑥 𝐵) = (𝑥 · 𝐵) ↔ (-𝑦 𝐵) = (-𝑦 · 𝐵)))
13 oveq1 6612 . . . . 5 (𝑥 = 𝐴 → (𝑥 𝐵) = (𝐴 𝐵))
14 oveq1 6612 . . . . 5 (𝑥 = 𝐴 → (𝑥 · 𝐵) = (𝐴 · 𝐵))
1513, 14eqeq12d 2641 . . . 4 (𝑥 = 𝐴 → ((𝑥 𝐵) = (𝑥 · 𝐵) ↔ (𝐴 𝐵) = (𝐴 · 𝐵)))
16 clmmulg.1 . . . . . . 7 𝑉 = (Base‘𝑊)
17 eqid 2626 . . . . . . 7 (0g𝑊) = (0g𝑊)
18 clmmulg.2 . . . . . . 7 = (.g𝑊)
1916, 17, 18mulg0 17462 . . . . . 6 (𝐵𝑉 → (0 𝐵) = (0g𝑊))
2019adantl 482 . . . . 5 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → (0 𝐵) = (0g𝑊))
21 eqid 2626 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
22 clmmulg.3 . . . . . 6 · = ( ·𝑠𝑊)
2316, 21, 22, 17clm0vs 22798 . . . . 5 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → (0 · 𝐵) = (0g𝑊))
2420, 23eqtr4d 2663 . . . 4 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → (0 𝐵) = (0 · 𝐵))
25 oveq1 6612 . . . . . 6 ((𝑦 𝐵) = (𝑦 · 𝐵) → ((𝑦 𝐵)(+g𝑊)𝐵) = ((𝑦 · 𝐵)(+g𝑊)𝐵))
26 clmgrp 22771 . . . . . . . . . 10 (𝑊 ∈ ℂMod → 𝑊 ∈ Grp)
27 grpmnd 17345 . . . . . . . . . 10 (𝑊 ∈ Grp → 𝑊 ∈ Mnd)
2826, 27syl 17 . . . . . . . . 9 (𝑊 ∈ ℂMod → 𝑊 ∈ Mnd)
2928ad2antrr 761 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → 𝑊 ∈ Mnd)
30 simpr 477 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℕ0)
31 simplr 791 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → 𝐵𝑉)
32 eqid 2626 . . . . . . . . 9 (+g𝑊) = (+g𝑊)
3316, 18, 32mulgnn0p1 17468 . . . . . . . 8 ((𝑊 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝐵𝑉) → ((𝑦 + 1) 𝐵) = ((𝑦 𝐵)(+g𝑊)𝐵))
3429, 30, 31, 33syl3anc 1323 . . . . . . 7 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1) 𝐵) = ((𝑦 𝐵)(+g𝑊)𝐵))
35 simpll 789 . . . . . . . . 9 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → 𝑊 ∈ ℂMod)
36 eqid 2626 . . . . . . . . . . . 12 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
3721, 36clmzss 22781 . . . . . . . . . . 11 (𝑊 ∈ ℂMod → ℤ ⊆ (Base‘(Scalar‘𝑊)))
3837ad2antrr 761 . . . . . . . . . 10 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → ℤ ⊆ (Base‘(Scalar‘𝑊)))
39 nn0z 11345 . . . . . . . . . . 11 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
4039adantl 482 . . . . . . . . . 10 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℤ)
4138, 40sseldd 3589 . . . . . . . . 9 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ (Base‘(Scalar‘𝑊)))
42 1zzd 11353 . . . . . . . . . 10 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → 1 ∈ ℤ)
4338, 42sseldd 3589 . . . . . . . . 9 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → 1 ∈ (Base‘(Scalar‘𝑊)))
4416, 21, 22, 36, 32clmvsdir 22794 . . . . . . . . 9 ((𝑊 ∈ ℂMod ∧ (𝑦 ∈ (Base‘(Scalar‘𝑊)) ∧ 1 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐵𝑉)) → ((𝑦 + 1) · 𝐵) = ((𝑦 · 𝐵)(+g𝑊)(1 · 𝐵)))
4535, 41, 43, 31, 44syl13anc 1325 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1) · 𝐵) = ((𝑦 · 𝐵)(+g𝑊)(1 · 𝐵)))
4616, 22clmvs1 22796 . . . . . . . . . 10 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → (1 · 𝐵) = 𝐵)
4746adantr 481 . . . . . . . . 9 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → (1 · 𝐵) = 𝐵)
4847oveq2d 6621 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → ((𝑦 · 𝐵)(+g𝑊)(1 · 𝐵)) = ((𝑦 · 𝐵)(+g𝑊)𝐵))
4945, 48eqtrd 2660 . . . . . . 7 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1) · 𝐵) = ((𝑦 · 𝐵)(+g𝑊)𝐵))
5034, 49eqeq12d 2641 . . . . . 6 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → (((𝑦 + 1) 𝐵) = ((𝑦 + 1) · 𝐵) ↔ ((𝑦 𝐵)(+g𝑊)𝐵) = ((𝑦 · 𝐵)(+g𝑊)𝐵)))
5125, 50syl5ibr 236 . . . . 5 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → ((𝑦 𝐵) = (𝑦 · 𝐵) → ((𝑦 + 1) 𝐵) = ((𝑦 + 1) · 𝐵)))
5251ex 450 . . . 4 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → (𝑦 ∈ ℕ0 → ((𝑦 𝐵) = (𝑦 · 𝐵) → ((𝑦 + 1) 𝐵) = ((𝑦 + 1) · 𝐵))))
53 fveq2 6150 . . . . . 6 ((𝑦 𝐵) = (𝑦 · 𝐵) → ((invg𝑊)‘(𝑦 𝐵)) = ((invg𝑊)‘(𝑦 · 𝐵)))
5426ad2antrr 761 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → 𝑊 ∈ Grp)
55 nnz 11344 . . . . . . . . 9 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
5655adantl 482 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℤ)
57 simplr 791 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → 𝐵𝑉)
58 eqid 2626 . . . . . . . . 9 (invg𝑊) = (invg𝑊)
5916, 18, 58mulgneg 17476 . . . . . . . 8 ((𝑊 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝐵𝑉) → (-𝑦 𝐵) = ((invg𝑊)‘(𝑦 𝐵)))
6054, 56, 57, 59syl3anc 1323 . . . . . . 7 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → (-𝑦 𝐵) = ((invg𝑊)‘(𝑦 𝐵)))
61 simpll 789 . . . . . . . . 9 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → 𝑊 ∈ ℂMod)
6237ad2antrr 761 . . . . . . . . . 10 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → ℤ ⊆ (Base‘(Scalar‘𝑊)))
6362, 56sseldd 3589 . . . . . . . . 9 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ (Base‘(Scalar‘𝑊)))
6416, 21, 22, 58, 36, 61, 57, 63clmvsneg 22803 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → ((invg𝑊)‘(𝑦 · 𝐵)) = (-𝑦 · 𝐵))
6564eqcomd 2632 . . . . . . 7 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → (-𝑦 · 𝐵) = ((invg𝑊)‘(𝑦 · 𝐵)))
6660, 65eqeq12d 2641 . . . . . 6 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → ((-𝑦 𝐵) = (-𝑦 · 𝐵) ↔ ((invg𝑊)‘(𝑦 𝐵)) = ((invg𝑊)‘(𝑦 · 𝐵))))
6753, 66syl5ibr 236 . . . . 5 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → ((𝑦 𝐵) = (𝑦 · 𝐵) → (-𝑦 𝐵) = (-𝑦 · 𝐵)))
6867ex 450 . . . 4 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → (𝑦 ∈ ℕ → ((𝑦 𝐵) = (𝑦 · 𝐵) → (-𝑦 𝐵) = (-𝑦 · 𝐵))))
693, 6, 9, 12, 15, 24, 52, 68zindd 11422 . . 3 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → (𝐴 ∈ ℤ → (𝐴 𝐵) = (𝐴 · 𝐵)))
70693impia 1258 . 2 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉𝐴 ∈ ℤ) → (𝐴 𝐵) = (𝐴 · 𝐵))
71703com23 1268 1 ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ ℤ ∧ 𝐵𝑉) → (𝐴 𝐵) = (𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1992  wss 3560  cfv 5850  (class class class)co 6605  0cc0 9881  1c1 9882   + caddc 9884  -cneg 10212  cn 10965  0cn0 11237  cz 11322  Basecbs 15776  +gcplusg 15857  Scalarcsca 15860   ·𝑠 cvsca 15861  0gc0g 16016  Mndcmnd 17210  Grpcgrp 17338  invgcminusg 17339  .gcmg 17456  ℂModcclm 22765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-inf2 8483  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-addf 9960  ax-mulf 9961
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-oadd 7510  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-2 11024  df-3 11025  df-4 11026  df-5 11027  df-6 11028  df-7 11029  df-8 11030  df-9 11031  df-n0 11238  df-z 11323  df-dec 11438  df-uz 11632  df-fz 12266  df-seq 12739  df-struct 15778  df-ndx 15779  df-slot 15780  df-base 15781  df-sets 15782  df-ress 15783  df-plusg 15870  df-mulr 15871  df-starv 15872  df-tset 15876  df-ple 15877  df-ds 15880  df-unif 15881  df-0g 16018  df-mgm 17158  df-sgrp 17200  df-mnd 17211  df-grp 17341  df-minusg 17342  df-mulg 17457  df-subg 17507  df-cmn 18111  df-mgp 18406  df-ur 18418  df-ring 18465  df-cring 18466  df-subrg 18694  df-lmod 18781  df-cnfld 19661  df-clm 22766
This theorem is referenced by:  clmzlmvsca  22816  minveclem2  23100
  Copyright terms: Public domain W3C validator