MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphreccllem Structured version   Visualization version   GIF version

Theorem cphreccllem 22901
Description: Lemma for cphreccl 22904. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
cphsubrglem.k 𝐾 = (Base‘𝐹)
cphsubrglem.1 (𝜑𝐹 = (ℂflds 𝐴))
cphsubrglem.2 (𝜑𝐹 ∈ DivRing)
Assertion
Ref Expression
cphreccllem ((𝜑𝑋𝐾𝑋 ≠ 0) → (1 / 𝑋) ∈ 𝐾)

Proof of Theorem cphreccllem
StepHypRef Expression
1 cphsubrglem.k . . . . . . . 8 𝐾 = (Base‘𝐹)
2 cphsubrglem.1 . . . . . . . 8 (𝜑𝐹 = (ℂflds 𝐴))
3 cphsubrglem.2 . . . . . . . 8 (𝜑𝐹 ∈ DivRing)
41, 2, 3cphsubrglem 22900 . . . . . . 7 (𝜑 → (𝐹 = (ℂflds 𝐾) ∧ 𝐾 = (𝐴 ∩ ℂ) ∧ 𝐾 ∈ (SubRing‘ℂfld)))
54simp3d 1073 . . . . . 6 (𝜑𝐾 ∈ (SubRing‘ℂfld))
653ad2ant1 1080 . . . . 5 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝐾 ∈ (SubRing‘ℂfld))
7 cnfldbas 19682 . . . . . 6 ℂ = (Base‘ℂfld)
87subrgss 18713 . . . . 5 (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ⊆ ℂ)
96, 8syl 17 . . . 4 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝐾 ⊆ ℂ)
10 simp2 1060 . . . 4 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝑋𝐾)
119, 10sseldd 3588 . . 3 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝑋 ∈ ℂ)
12 simp3 1061 . . 3 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝑋 ≠ 0)
13 cnfldinv 19709 . . 3 ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → ((invr‘ℂfld)‘𝑋) = (1 / 𝑋))
1411, 12, 13syl2anc 692 . 2 ((𝜑𝑋𝐾𝑋 ≠ 0) → ((invr‘ℂfld)‘𝑋) = (1 / 𝑋))
15 eqid 2621 . . . . . . . . . 10 (ℂflds 𝐾) = (ℂflds 𝐾)
16 cnfld0 19702 . . . . . . . . . 10 0 = (0g‘ℂfld)
1715, 16subrg0 18719 . . . . . . . . 9 (𝐾 ∈ (SubRing‘ℂfld) → 0 = (0g‘(ℂflds 𝐾)))
186, 17syl 17 . . . . . . . 8 ((𝜑𝑋𝐾𝑋 ≠ 0) → 0 = (0g‘(ℂflds 𝐾)))
194simp1d 1071 . . . . . . . . . 10 (𝜑𝐹 = (ℂflds 𝐾))
20193ad2ant1 1080 . . . . . . . . 9 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝐹 = (ℂflds 𝐾))
2120fveq2d 6157 . . . . . . . 8 ((𝜑𝑋𝐾𝑋 ≠ 0) → (0g𝐹) = (0g‘(ℂflds 𝐾)))
2218, 21eqtr4d 2658 . . . . . . 7 ((𝜑𝑋𝐾𝑋 ≠ 0) → 0 = (0g𝐹))
2312, 22neeqtrd 2859 . . . . . 6 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝑋 ≠ (0g𝐹))
24 eldifsn 4292 . . . . . 6 (𝑋 ∈ (𝐾 ∖ {(0g𝐹)}) ↔ (𝑋𝐾𝑋 ≠ (0g𝐹)))
2510, 23, 24sylanbrc 697 . . . . 5 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝑋 ∈ (𝐾 ∖ {(0g𝐹)}))
2633ad2ant1 1080 . . . . . . 7 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝐹 ∈ DivRing)
27 eqid 2621 . . . . . . . . 9 (Unit‘𝐹) = (Unit‘𝐹)
28 eqid 2621 . . . . . . . . 9 (0g𝐹) = (0g𝐹)
291, 27, 28isdrng 18683 . . . . . . . 8 (𝐹 ∈ DivRing ↔ (𝐹 ∈ Ring ∧ (Unit‘𝐹) = (𝐾 ∖ {(0g𝐹)})))
3029simprbi 480 . . . . . . 7 (𝐹 ∈ DivRing → (Unit‘𝐹) = (𝐾 ∖ {(0g𝐹)}))
3126, 30syl 17 . . . . . 6 ((𝜑𝑋𝐾𝑋 ≠ 0) → (Unit‘𝐹) = (𝐾 ∖ {(0g𝐹)}))
3220fveq2d 6157 . . . . . 6 ((𝜑𝑋𝐾𝑋 ≠ 0) → (Unit‘𝐹) = (Unit‘(ℂflds 𝐾)))
3331, 32eqtr3d 2657 . . . . 5 ((𝜑𝑋𝐾𝑋 ≠ 0) → (𝐾 ∖ {(0g𝐹)}) = (Unit‘(ℂflds 𝐾)))
3425, 33eleqtrd 2700 . . . 4 ((𝜑𝑋𝐾𝑋 ≠ 0) → 𝑋 ∈ (Unit‘(ℂflds 𝐾)))
35 eqid 2621 . . . . . 6 (Unit‘ℂfld) = (Unit‘ℂfld)
36 eqid 2621 . . . . . 6 (Unit‘(ℂflds 𝐾)) = (Unit‘(ℂflds 𝐾))
37 eqid 2621 . . . . . 6 (invr‘ℂfld) = (invr‘ℂfld)
3815, 35, 36, 37subrgunit 18730 . . . . 5 (𝐾 ∈ (SubRing‘ℂfld) → (𝑋 ∈ (Unit‘(ℂflds 𝐾)) ↔ (𝑋 ∈ (Unit‘ℂfld) ∧ 𝑋𝐾 ∧ ((invr‘ℂfld)‘𝑋) ∈ 𝐾)))
396, 38syl 17 . . . 4 ((𝜑𝑋𝐾𝑋 ≠ 0) → (𝑋 ∈ (Unit‘(ℂflds 𝐾)) ↔ (𝑋 ∈ (Unit‘ℂfld) ∧ 𝑋𝐾 ∧ ((invr‘ℂfld)‘𝑋) ∈ 𝐾)))
4034, 39mpbid 222 . . 3 ((𝜑𝑋𝐾𝑋 ≠ 0) → (𝑋 ∈ (Unit‘ℂfld) ∧ 𝑋𝐾 ∧ ((invr‘ℂfld)‘𝑋) ∈ 𝐾))
4140simp3d 1073 . 2 ((𝜑𝑋𝐾𝑋 ≠ 0) → ((invr‘ℂfld)‘𝑋) ∈ 𝐾)
4214, 41eqeltrrd 2699 1 ((𝜑𝑋𝐾𝑋 ≠ 0) → (1 / 𝑋) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1036   = wceq 1480  wcel 1987  wne 2790  cdif 3556  cin 3558  wss 3559  {csn 4153  cfv 5852  (class class class)co 6610  cc 9886  0cc0 9888  1c1 9889   / cdiv 10636  Basecbs 15792  s cress 15793  0gc0g 16032  Ringcrg 18479  Unitcui 18571  invrcinvr 18603  DivRingcdr 18679  SubRingcsubrg 18708  fldccnfld 19678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-addf 9967  ax-mulf 9968
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-tpos 7304  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-fz 12277  df-seq 12750  df-exp 12809  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-starv 15888  df-tset 15892  df-ple 15893  df-ds 15896  df-unif 15897  df-0g 16034  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-grp 17357  df-minusg 17358  df-subg 17523  df-cmn 18127  df-mgp 18422  df-ur 18434  df-ring 18481  df-cring 18482  df-oppr 18555  df-dvdsr 18573  df-unit 18574  df-invr 18604  df-dvr 18615  df-drng 18681  df-subrg 18710  df-cnfld 19679
This theorem is referenced by:  cphreccl  22904  ipcau2  22956
  Copyright terms: Public domain W3C validator