MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divmuldivi Structured version   Visualization version   GIF version

Theorem divmuldivi 11400
Description: Multiplication of two ratios. Theorem I.14 of [Apostol] p. 18. (Contributed by NM, 16-Feb-1995.)
Hypotheses
Ref Expression
divclz.1 𝐴 ∈ ℂ
divclz.2 𝐵 ∈ ℂ
divmulz.3 𝐶 ∈ ℂ
divmuldiv.4 𝐷 ∈ ℂ
divmuldiv.5 𝐵 ≠ 0
divmuldiv.6 𝐷 ≠ 0
Assertion
Ref Expression
divmuldivi ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷))

Proof of Theorem divmuldivi
StepHypRef Expression
1 divclz.1 . 2 𝐴 ∈ ℂ
2 divmulz.3 . 2 𝐶 ∈ ℂ
3 divclz.2 . . 3 𝐵 ∈ ℂ
4 divmuldiv.5 . . 3 𝐵 ≠ 0
53, 4pm3.2i 473 . 2 (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)
6 divmuldiv.4 . . 3 𝐷 ∈ ℂ
7 divmuldiv.6 . . 3 𝐷 ≠ 0
86, 7pm3.2i 473 . 2 (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)
9 divmuldiv 11340 . 2 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷)))
101, 2, 5, 8, 9mp4an 691 1 ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1537  wcel 2114  wne 3016  (class class class)co 7156  cc 10535  0cc0 10537   · cmul 10542   / cdiv 11297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298
This theorem is referenced by:  divmul13i  11401  8th4div3  11858  halfpm6th  11859  sqrecii  13547  sqdivi  13549  bpoly3  15412  efival  15505  ef01bndlem  15537  sincos4thpi  25099  sincos6thpi  25101  bposlem8  25867  bposlem9  25868  quad3  32913  wallispi2lem1  42376
  Copyright terms: Public domain W3C validator