MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdf1o Structured version   Visualization version   GIF version

Theorem dprdf1o 19156
Description: Rearrange the index set of a direct product family. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdf1o.1 (𝜑𝐺dom DProd 𝑆)
dprdf1o.2 (𝜑 → dom 𝑆 = 𝐼)
dprdf1o.3 (𝜑𝐹:𝐽1-1-onto𝐼)
Assertion
Ref Expression
dprdf1o (𝜑 → (𝐺dom DProd (𝑆𝐹) ∧ (𝐺 DProd (𝑆𝐹)) = (𝐺 DProd 𝑆)))

Proof of Theorem dprdf1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2823 . . 3 (Cntz‘𝐺) = (Cntz‘𝐺)
2 eqid 2823 . . 3 (0g𝐺) = (0g𝐺)
3 eqid 2823 . . 3 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
4 dprdf1o.1 . . . 4 (𝜑𝐺dom DProd 𝑆)
5 dprdgrp 19129 . . . 4 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
64, 5syl 17 . . 3 (𝜑𝐺 ∈ Grp)
7 dprdf1o.3 . . . . 5 (𝜑𝐹:𝐽1-1-onto𝐼)
8 f1of1 6616 . . . . 5 (𝐹:𝐽1-1-onto𝐼𝐹:𝐽1-1𝐼)
97, 8syl 17 . . . 4 (𝜑𝐹:𝐽1-1𝐼)
10 dprdf1o.2 . . . . 5 (𝜑 → dom 𝑆 = 𝐼)
114, 10dprddomcld 19125 . . . 4 (𝜑𝐼 ∈ V)
12 f1dmex 7660 . . . 4 ((𝐹:𝐽1-1𝐼𝐼 ∈ V) → 𝐽 ∈ V)
139, 11, 12syl2anc 586 . . 3 (𝜑𝐽 ∈ V)
144, 10dprdf2 19131 . . . 4 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
15 f1of 6617 . . . . 5 (𝐹:𝐽1-1-onto𝐼𝐹:𝐽𝐼)
167, 15syl 17 . . . 4 (𝜑𝐹:𝐽𝐼)
17 fco 6533 . . . 4 ((𝑆:𝐼⟶(SubGrp‘𝐺) ∧ 𝐹:𝐽𝐼) → (𝑆𝐹):𝐽⟶(SubGrp‘𝐺))
1814, 16, 17syl2anc 586 . . 3 (𝜑 → (𝑆𝐹):𝐽⟶(SubGrp‘𝐺))
194adantr 483 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → 𝐺dom DProd 𝑆)
2010adantr 483 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → dom 𝑆 = 𝐼)
2116adantr 483 . . . . . 6 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → 𝐹:𝐽𝐼)
22 simpr1 1190 . . . . . 6 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → 𝑥𝐽)
2321, 22ffvelrnd 6854 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → (𝐹𝑥) ∈ 𝐼)
24 simpr2 1191 . . . . . 6 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → 𝑦𝐽)
2521, 24ffvelrnd 6854 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → (𝐹𝑦) ∈ 𝐼)
26 simpr3 1192 . . . . . 6 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → 𝑥𝑦)
279adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → 𝐹:𝐽1-1𝐼)
28 f1fveq 7022 . . . . . . . 8 ((𝐹:𝐽1-1𝐼 ∧ (𝑥𝐽𝑦𝐽)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
2927, 22, 24, 28syl12anc 834 . . . . . . 7 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
3029necon3bid 3062 . . . . . 6 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → ((𝐹𝑥) ≠ (𝐹𝑦) ↔ 𝑥𝑦))
3126, 30mpbird 259 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → (𝐹𝑥) ≠ (𝐹𝑦))
3219, 20, 23, 25, 31, 1dprdcntz 19132 . . . 4 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → (𝑆‘(𝐹𝑥)) ⊆ ((Cntz‘𝐺)‘(𝑆‘(𝐹𝑦))))
33 fvco3 6762 . . . . 5 ((𝐹:𝐽𝐼𝑥𝐽) → ((𝑆𝐹)‘𝑥) = (𝑆‘(𝐹𝑥)))
3421, 22, 33syl2anc 586 . . . 4 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → ((𝑆𝐹)‘𝑥) = (𝑆‘(𝐹𝑥)))
35 fvco3 6762 . . . . . 6 ((𝐹:𝐽𝐼𝑦𝐽) → ((𝑆𝐹)‘𝑦) = (𝑆‘(𝐹𝑦)))
3621, 24, 35syl2anc 586 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → ((𝑆𝐹)‘𝑦) = (𝑆‘(𝐹𝑦)))
3736fveq2d 6676 . . . 4 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → ((Cntz‘𝐺)‘((𝑆𝐹)‘𝑦)) = ((Cntz‘𝐺)‘(𝑆‘(𝐹𝑦))))
3832, 34, 373sstr4d 4016 . . 3 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → ((𝑆𝐹)‘𝑥) ⊆ ((Cntz‘𝐺)‘((𝑆𝐹)‘𝑦)))
3916, 33sylan 582 . . . . . 6 ((𝜑𝑥𝐽) → ((𝑆𝐹)‘𝑥) = (𝑆‘(𝐹𝑥)))
40 imaco 6106 . . . . . . . . 9 ((𝑆𝐹) “ (𝐽 ∖ {𝑥})) = (𝑆 “ (𝐹 “ (𝐽 ∖ {𝑥})))
417adantr 483 . . . . . . . . . . . 12 ((𝜑𝑥𝐽) → 𝐹:𝐽1-1-onto𝐼)
42 dff1o3 6623 . . . . . . . . . . . . 13 (𝐹:𝐽1-1-onto𝐼 ↔ (𝐹:𝐽onto𝐼 ∧ Fun 𝐹))
4342simprbi 499 . . . . . . . . . . . 12 (𝐹:𝐽1-1-onto𝐼 → Fun 𝐹)
44 imadif 6440 . . . . . . . . . . . 12 (Fun 𝐹 → (𝐹 “ (𝐽 ∖ {𝑥})) = ((𝐹𝐽) ∖ (𝐹 “ {𝑥})))
4541, 43, 443syl 18 . . . . . . . . . . 11 ((𝜑𝑥𝐽) → (𝐹 “ (𝐽 ∖ {𝑥})) = ((𝐹𝐽) ∖ (𝐹 “ {𝑥})))
46 f1ofo 6624 . . . . . . . . . . . . 13 (𝐹:𝐽1-1-onto𝐼𝐹:𝐽onto𝐼)
47 foima 6597 . . . . . . . . . . . . 13 (𝐹:𝐽onto𝐼 → (𝐹𝐽) = 𝐼)
4841, 46, 473syl 18 . . . . . . . . . . . 12 ((𝜑𝑥𝐽) → (𝐹𝐽) = 𝐼)
49 f1ofn 6618 . . . . . . . . . . . . . . 15 (𝐹:𝐽1-1-onto𝐼𝐹 Fn 𝐽)
507, 49syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹 Fn 𝐽)
51 fnsnfv 6745 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝐽𝑥𝐽) → {(𝐹𝑥)} = (𝐹 “ {𝑥}))
5250, 51sylan 582 . . . . . . . . . . . . 13 ((𝜑𝑥𝐽) → {(𝐹𝑥)} = (𝐹 “ {𝑥}))
5352eqcomd 2829 . . . . . . . . . . . 12 ((𝜑𝑥𝐽) → (𝐹 “ {𝑥}) = {(𝐹𝑥)})
5448, 53difeq12d 4102 . . . . . . . . . . 11 ((𝜑𝑥𝐽) → ((𝐹𝐽) ∖ (𝐹 “ {𝑥})) = (𝐼 ∖ {(𝐹𝑥)}))
5545, 54eqtrd 2858 . . . . . . . . . 10 ((𝜑𝑥𝐽) → (𝐹 “ (𝐽 ∖ {𝑥})) = (𝐼 ∖ {(𝐹𝑥)}))
5655imaeq2d 5931 . . . . . . . . 9 ((𝜑𝑥𝐽) → (𝑆 “ (𝐹 “ (𝐽 ∖ {𝑥}))) = (𝑆 “ (𝐼 ∖ {(𝐹𝑥)})))
5740, 56syl5eq 2870 . . . . . . . 8 ((𝜑𝑥𝐽) → ((𝑆𝐹) “ (𝐽 ∖ {𝑥})) = (𝑆 “ (𝐼 ∖ {(𝐹𝑥)})))
5857unieqd 4854 . . . . . . 7 ((𝜑𝑥𝐽) → ((𝑆𝐹) “ (𝐽 ∖ {𝑥})) = (𝑆 “ (𝐼 ∖ {(𝐹𝑥)})))
5958fveq2d 6676 . . . . . 6 ((𝜑𝑥𝐽) → ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐹) “ (𝐽 ∖ {𝑥}))) = ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {(𝐹𝑥)}))))
6039, 59ineq12d 4192 . . . . 5 ((𝜑𝑥𝐽) → (((𝑆𝐹)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐹) “ (𝐽 ∖ {𝑥})))) = ((𝑆‘(𝐹𝑥)) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {(𝐹𝑥)})))))
614adantr 483 . . . . . 6 ((𝜑𝑥𝐽) → 𝐺dom DProd 𝑆)
6210adantr 483 . . . . . 6 ((𝜑𝑥𝐽) → dom 𝑆 = 𝐼)
6316ffvelrnda 6853 . . . . . 6 ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ 𝐼)
6461, 62, 63, 2, 3dprddisj 19133 . . . . 5 ((𝜑𝑥𝐽) → ((𝑆‘(𝐹𝑥)) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {(𝐹𝑥)})))) = {(0g𝐺)})
6560, 64eqtrd 2858 . . . 4 ((𝜑𝑥𝐽) → (((𝑆𝐹)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐹) “ (𝐽 ∖ {𝑥})))) = {(0g𝐺)})
66 eqimss 4025 . . . 4 ((((𝑆𝐹)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐹) “ (𝐽 ∖ {𝑥})))) = {(0g𝐺)} → (((𝑆𝐹)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐹) “ (𝐽 ∖ {𝑥})))) ⊆ {(0g𝐺)})
6765, 66syl 17 . . 3 ((𝜑𝑥𝐽) → (((𝑆𝐹)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐹) “ (𝐽 ∖ {𝑥})))) ⊆ {(0g𝐺)})
681, 2, 3, 6, 13, 18, 38, 67dmdprdd 19123 . 2 (𝜑𝐺dom DProd (𝑆𝐹))
69 rnco2 6108 . . . . . 6 ran (𝑆𝐹) = (𝑆 “ ran 𝐹)
70 forn 6595 . . . . . . . . 9 (𝐹:𝐽onto𝐼 → ran 𝐹 = 𝐼)
717, 46, 703syl 18 . . . . . . . 8 (𝜑 → ran 𝐹 = 𝐼)
7271imaeq2d 5931 . . . . . . 7 (𝜑 → (𝑆 “ ran 𝐹) = (𝑆𝐼))
73 ffn 6516 . . . . . . . 8 (𝑆:𝐼⟶(SubGrp‘𝐺) → 𝑆 Fn 𝐼)
74 fnima 6480 . . . . . . . 8 (𝑆 Fn 𝐼 → (𝑆𝐼) = ran 𝑆)
7514, 73, 743syl 18 . . . . . . 7 (𝜑 → (𝑆𝐼) = ran 𝑆)
7672, 75eqtrd 2858 . . . . . 6 (𝜑 → (𝑆 “ ran 𝐹) = ran 𝑆)
7769, 76syl5eq 2870 . . . . 5 (𝜑 → ran (𝑆𝐹) = ran 𝑆)
7877unieqd 4854 . . . 4 (𝜑 ran (𝑆𝐹) = ran 𝑆)
7978fveq2d 6676 . . 3 (𝜑 → ((mrCls‘(SubGrp‘𝐺))‘ ran (𝑆𝐹)) = ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
803dprdspan 19151 . . . 4 (𝐺dom DProd (𝑆𝐹) → (𝐺 DProd (𝑆𝐹)) = ((mrCls‘(SubGrp‘𝐺))‘ ran (𝑆𝐹)))
8168, 80syl 17 . . 3 (𝜑 → (𝐺 DProd (𝑆𝐹)) = ((mrCls‘(SubGrp‘𝐺))‘ ran (𝑆𝐹)))
823dprdspan 19151 . . . 4 (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
834, 82syl 17 . . 3 (𝜑 → (𝐺 DProd 𝑆) = ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
8479, 81, 833eqtr4d 2868 . 2 (𝜑 → (𝐺 DProd (𝑆𝐹)) = (𝐺 DProd 𝑆))
8568, 84jca 514 1 (𝜑 → (𝐺dom DProd (𝑆𝐹) ∧ (𝐺 DProd (𝑆𝐹)) = (𝐺 DProd 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  Vcvv 3496  cdif 3935  cin 3937  wss 3938  {csn 4569   cuni 4840   class class class wbr 5068  ccnv 5556  dom cdm 5557  ran crn 5558  cima 5560  ccom 5561  Fun wfun 6351   Fn wfn 6352  wf 6353  1-1wf1 6354  ontowfo 6355  1-1-ontowf1o 6356  cfv 6357  (class class class)co 7158  0gc0g 16715  mrClscmrc 16856  Grpcgrp 18105  SubGrpcsubg 18275  Cntzccntz 18447   DProd cdprd 19117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-tpos 7894  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-0g 16717  df-gsum 16718  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-mulg 18227  df-subg 18278  df-ghm 18358  df-gim 18401  df-cntz 18449  df-oppg 18476  df-cmn 18910  df-dprd 19119
This theorem is referenced by:  dprdf1  19157  ablfaclem2  19210
  Copyright terms: Public domain W3C validator