MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdf1o Structured version   Visualization version   GIF version

Theorem dprdf1o 18352
Description: Rearrange the index set of a direct product family. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdf1o.1 (𝜑𝐺dom DProd 𝑆)
dprdf1o.2 (𝜑 → dom 𝑆 = 𝐼)
dprdf1o.3 (𝜑𝐹:𝐽1-1-onto𝐼)
Assertion
Ref Expression
dprdf1o (𝜑 → (𝐺dom DProd (𝑆𝐹) ∧ (𝐺 DProd (𝑆𝐹)) = (𝐺 DProd 𝑆)))

Proof of Theorem dprdf1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2621 . . 3 (Cntz‘𝐺) = (Cntz‘𝐺)
2 eqid 2621 . . 3 (0g𝐺) = (0g𝐺)
3 eqid 2621 . . 3 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
4 dprdf1o.1 . . . 4 (𝜑𝐺dom DProd 𝑆)
5 dprdgrp 18325 . . . 4 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
64, 5syl 17 . . 3 (𝜑𝐺 ∈ Grp)
7 dprdf1o.3 . . . . 5 (𝜑𝐹:𝐽1-1-onto𝐼)
8 f1of1 6093 . . . . 5 (𝐹:𝐽1-1-onto𝐼𝐹:𝐽1-1𝐼)
97, 8syl 17 . . . 4 (𝜑𝐹:𝐽1-1𝐼)
10 dprdf1o.2 . . . . 5 (𝜑 → dom 𝑆 = 𝐼)
114, 10dprddomcld 18321 . . . 4 (𝜑𝐼 ∈ V)
12 f1dmex 7083 . . . 4 ((𝐹:𝐽1-1𝐼𝐼 ∈ V) → 𝐽 ∈ V)
139, 11, 12syl2anc 692 . . 3 (𝜑𝐽 ∈ V)
144, 10dprdf2 18327 . . . 4 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
15 f1of 6094 . . . . 5 (𝐹:𝐽1-1-onto𝐼𝐹:𝐽𝐼)
167, 15syl 17 . . . 4 (𝜑𝐹:𝐽𝐼)
17 fco 6015 . . . 4 ((𝑆:𝐼⟶(SubGrp‘𝐺) ∧ 𝐹:𝐽𝐼) → (𝑆𝐹):𝐽⟶(SubGrp‘𝐺))
1814, 16, 17syl2anc 692 . . 3 (𝜑 → (𝑆𝐹):𝐽⟶(SubGrp‘𝐺))
194adantr 481 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → 𝐺dom DProd 𝑆)
2010adantr 481 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → dom 𝑆 = 𝐼)
2116adantr 481 . . . . . 6 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → 𝐹:𝐽𝐼)
22 simpr1 1065 . . . . . 6 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → 𝑥𝐽)
2321, 22ffvelrnd 6316 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → (𝐹𝑥) ∈ 𝐼)
24 simpr2 1066 . . . . . 6 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → 𝑦𝐽)
2521, 24ffvelrnd 6316 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → (𝐹𝑦) ∈ 𝐼)
26 simpr3 1067 . . . . . 6 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → 𝑥𝑦)
279adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → 𝐹:𝐽1-1𝐼)
28 f1fveq 6473 . . . . . . . 8 ((𝐹:𝐽1-1𝐼 ∧ (𝑥𝐽𝑦𝐽)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
2927, 22, 24, 28syl12anc 1321 . . . . . . 7 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
3029necon3bid 2834 . . . . . 6 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → ((𝐹𝑥) ≠ (𝐹𝑦) ↔ 𝑥𝑦))
3126, 30mpbird 247 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → (𝐹𝑥) ≠ (𝐹𝑦))
3219, 20, 23, 25, 31, 1dprdcntz 18328 . . . 4 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → (𝑆‘(𝐹𝑥)) ⊆ ((Cntz‘𝐺)‘(𝑆‘(𝐹𝑦))))
33 fvco3 6232 . . . . 5 ((𝐹:𝐽𝐼𝑥𝐽) → ((𝑆𝐹)‘𝑥) = (𝑆‘(𝐹𝑥)))
3421, 22, 33syl2anc 692 . . . 4 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → ((𝑆𝐹)‘𝑥) = (𝑆‘(𝐹𝑥)))
35 fvco3 6232 . . . . . 6 ((𝐹:𝐽𝐼𝑦𝐽) → ((𝑆𝐹)‘𝑦) = (𝑆‘(𝐹𝑦)))
3621, 24, 35syl2anc 692 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → ((𝑆𝐹)‘𝑦) = (𝑆‘(𝐹𝑦)))
3736fveq2d 6152 . . . 4 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → ((Cntz‘𝐺)‘((𝑆𝐹)‘𝑦)) = ((Cntz‘𝐺)‘(𝑆‘(𝐹𝑦))))
3832, 34, 373sstr4d 3627 . . 3 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → ((𝑆𝐹)‘𝑥) ⊆ ((Cntz‘𝐺)‘((𝑆𝐹)‘𝑦)))
3916, 33sylan 488 . . . . . 6 ((𝜑𝑥𝐽) → ((𝑆𝐹)‘𝑥) = (𝑆‘(𝐹𝑥)))
40 imaco 5599 . . . . . . . . 9 ((𝑆𝐹) “ (𝐽 ∖ {𝑥})) = (𝑆 “ (𝐹 “ (𝐽 ∖ {𝑥})))
417adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥𝐽) → 𝐹:𝐽1-1-onto𝐼)
42 dff1o3 6100 . . . . . . . . . . . . 13 (𝐹:𝐽1-1-onto𝐼 ↔ (𝐹:𝐽onto𝐼 ∧ Fun 𝐹))
4342simprbi 480 . . . . . . . . . . . 12 (𝐹:𝐽1-1-onto𝐼 → Fun 𝐹)
44 imadif 5931 . . . . . . . . . . . 12 (Fun 𝐹 → (𝐹 “ (𝐽 ∖ {𝑥})) = ((𝐹𝐽) ∖ (𝐹 “ {𝑥})))
4541, 43, 443syl 18 . . . . . . . . . . 11 ((𝜑𝑥𝐽) → (𝐹 “ (𝐽 ∖ {𝑥})) = ((𝐹𝐽) ∖ (𝐹 “ {𝑥})))
46 f1ofo 6101 . . . . . . . . . . . . 13 (𝐹:𝐽1-1-onto𝐼𝐹:𝐽onto𝐼)
47 foima 6077 . . . . . . . . . . . . 13 (𝐹:𝐽onto𝐼 → (𝐹𝐽) = 𝐼)
4841, 46, 473syl 18 . . . . . . . . . . . 12 ((𝜑𝑥𝐽) → (𝐹𝐽) = 𝐼)
49 f1ofn 6095 . . . . . . . . . . . . . . 15 (𝐹:𝐽1-1-onto𝐼𝐹 Fn 𝐽)
507, 49syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹 Fn 𝐽)
51 fnsnfv 6215 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝐽𝑥𝐽) → {(𝐹𝑥)} = (𝐹 “ {𝑥}))
5250, 51sylan 488 . . . . . . . . . . . . 13 ((𝜑𝑥𝐽) → {(𝐹𝑥)} = (𝐹 “ {𝑥}))
5352eqcomd 2627 . . . . . . . . . . . 12 ((𝜑𝑥𝐽) → (𝐹 “ {𝑥}) = {(𝐹𝑥)})
5448, 53difeq12d 3707 . . . . . . . . . . 11 ((𝜑𝑥𝐽) → ((𝐹𝐽) ∖ (𝐹 “ {𝑥})) = (𝐼 ∖ {(𝐹𝑥)}))
5545, 54eqtrd 2655 . . . . . . . . . 10 ((𝜑𝑥𝐽) → (𝐹 “ (𝐽 ∖ {𝑥})) = (𝐼 ∖ {(𝐹𝑥)}))
5655imaeq2d 5425 . . . . . . . . 9 ((𝜑𝑥𝐽) → (𝑆 “ (𝐹 “ (𝐽 ∖ {𝑥}))) = (𝑆 “ (𝐼 ∖ {(𝐹𝑥)})))
5740, 56syl5eq 2667 . . . . . . . 8 ((𝜑𝑥𝐽) → ((𝑆𝐹) “ (𝐽 ∖ {𝑥})) = (𝑆 “ (𝐼 ∖ {(𝐹𝑥)})))
5857unieqd 4412 . . . . . . 7 ((𝜑𝑥𝐽) → ((𝑆𝐹) “ (𝐽 ∖ {𝑥})) = (𝑆 “ (𝐼 ∖ {(𝐹𝑥)})))
5958fveq2d 6152 . . . . . 6 ((𝜑𝑥𝐽) → ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐹) “ (𝐽 ∖ {𝑥}))) = ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {(𝐹𝑥)}))))
6039, 59ineq12d 3793 . . . . 5 ((𝜑𝑥𝐽) → (((𝑆𝐹)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐹) “ (𝐽 ∖ {𝑥})))) = ((𝑆‘(𝐹𝑥)) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {(𝐹𝑥)})))))
614adantr 481 . . . . . 6 ((𝜑𝑥𝐽) → 𝐺dom DProd 𝑆)
6210adantr 481 . . . . . 6 ((𝜑𝑥𝐽) → dom 𝑆 = 𝐼)
6316ffvelrnda 6315 . . . . . 6 ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ 𝐼)
6461, 62, 63, 2, 3dprddisj 18329 . . . . 5 ((𝜑𝑥𝐽) → ((𝑆‘(𝐹𝑥)) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {(𝐹𝑥)})))) = {(0g𝐺)})
6560, 64eqtrd 2655 . . . 4 ((𝜑𝑥𝐽) → (((𝑆𝐹)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐹) “ (𝐽 ∖ {𝑥})))) = {(0g𝐺)})
66 eqimss 3636 . . . 4 ((((𝑆𝐹)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐹) “ (𝐽 ∖ {𝑥})))) = {(0g𝐺)} → (((𝑆𝐹)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐹) “ (𝐽 ∖ {𝑥})))) ⊆ {(0g𝐺)})
6765, 66syl 17 . . 3 ((𝜑𝑥𝐽) → (((𝑆𝐹)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐹) “ (𝐽 ∖ {𝑥})))) ⊆ {(0g𝐺)})
681, 2, 3, 6, 13, 18, 38, 67dmdprdd 18319 . 2 (𝜑𝐺dom DProd (𝑆𝐹))
69 rnco2 5601 . . . . . 6 ran (𝑆𝐹) = (𝑆 “ ran 𝐹)
70 forn 6075 . . . . . . . . 9 (𝐹:𝐽onto𝐼 → ran 𝐹 = 𝐼)
717, 46, 703syl 18 . . . . . . . 8 (𝜑 → ran 𝐹 = 𝐼)
7271imaeq2d 5425 . . . . . . 7 (𝜑 → (𝑆 “ ran 𝐹) = (𝑆𝐼))
73 ffn 6002 . . . . . . . 8 (𝑆:𝐼⟶(SubGrp‘𝐺) → 𝑆 Fn 𝐼)
74 fnima 5967 . . . . . . . 8 (𝑆 Fn 𝐼 → (𝑆𝐼) = ran 𝑆)
7514, 73, 743syl 18 . . . . . . 7 (𝜑 → (𝑆𝐼) = ran 𝑆)
7672, 75eqtrd 2655 . . . . . 6 (𝜑 → (𝑆 “ ran 𝐹) = ran 𝑆)
7769, 76syl5eq 2667 . . . . 5 (𝜑 → ran (𝑆𝐹) = ran 𝑆)
7877unieqd 4412 . . . 4 (𝜑 ran (𝑆𝐹) = ran 𝑆)
7978fveq2d 6152 . . 3 (𝜑 → ((mrCls‘(SubGrp‘𝐺))‘ ran (𝑆𝐹)) = ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
803dprdspan 18347 . . . 4 (𝐺dom DProd (𝑆𝐹) → (𝐺 DProd (𝑆𝐹)) = ((mrCls‘(SubGrp‘𝐺))‘ ran (𝑆𝐹)))
8168, 80syl 17 . . 3 (𝜑 → (𝐺 DProd (𝑆𝐹)) = ((mrCls‘(SubGrp‘𝐺))‘ ran (𝑆𝐹)))
823dprdspan 18347 . . . 4 (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
834, 82syl 17 . . 3 (𝜑 → (𝐺 DProd 𝑆) = ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
8479, 81, 833eqtr4d 2665 . 2 (𝜑 → (𝐺 DProd (𝑆𝐹)) = (𝐺 DProd 𝑆))
8568, 84jca 554 1 (𝜑 → (𝐺dom DProd (𝑆𝐹) ∧ (𝐺 DProd (𝑆𝐹)) = (𝐺 DProd 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  Vcvv 3186  cdif 3552  cin 3554  wss 3555  {csn 4148   cuni 4402   class class class wbr 4613  ccnv 5073  dom cdm 5074  ran crn 5075  cima 5077  ccom 5078  Fun wfun 5841   Fn wfn 5842  wf 5843  1-1wf1 5844  ontowfo 5845  1-1-ontowf1o 5846  cfv 5847  (class class class)co 6604  0gc0g 16021  mrClscmrc 16164  Grpcgrp 17343  SubGrpcsubg 17509  Cntzccntz 17669   DProd cdprd 18313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-tpos 7297  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-seq 12742  df-hash 13058  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-0g 16023  df-gsum 16024  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mhm 17256  df-submnd 17257  df-grp 17346  df-minusg 17347  df-sbg 17348  df-mulg 17462  df-subg 17512  df-ghm 17579  df-gim 17622  df-cntz 17671  df-oppg 17697  df-cmn 18116  df-dprd 18315
This theorem is referenced by:  dprdf1  18353  ablfaclem2  18406
  Copyright terms: Public domain W3C validator