Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  drngnidl Structured version   Visualization version   GIF version

Theorem drngnidl 19148
 Description: A division ring has only the two trivial ideals. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Wolf Lammen, 6-Sep-2020.)
Hypotheses
Ref Expression
drngnidl.b 𝐵 = (Base‘𝑅)
drngnidl.z 0 = (0g𝑅)
drngnidl.u 𝑈 = (LIdeal‘𝑅)
Assertion
Ref Expression
drngnidl (𝑅 ∈ DivRing → 𝑈 = {{ 0 }, 𝐵})

Proof of Theorem drngnidl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 = { 0 }) → 𝑎 = { 0 })
21orcd 407 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 = { 0 }) → (𝑎 = { 0 } ∨ 𝑎 = 𝐵))
3 drngring 18675 . . . . . . . . . . 11 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
43ad2antrr 761 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 ≠ { 0 }) → 𝑅 ∈ Ring)
5 simplr 791 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 ≠ { 0 }) → 𝑎𝑈)
6 simpr 477 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 ≠ { 0 }) → 𝑎 ≠ { 0 })
7 drngnidl.u . . . . . . . . . . 11 𝑈 = (LIdeal‘𝑅)
8 drngnidl.z . . . . . . . . . . 11 0 = (0g𝑅)
97, 8lidlnz 19147 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑎𝑈𝑎 ≠ { 0 }) → ∃𝑏𝑎 𝑏0 )
104, 5, 6, 9syl3anc 1323 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 ≠ { 0 }) → ∃𝑏𝑎 𝑏0 )
11 simpll 789 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → 𝑅 ∈ DivRing)
12 drngnidl.b . . . . . . . . . . . . . . . . 17 𝐵 = (Base‘𝑅)
1312, 7lidlss 19129 . . . . . . . . . . . . . . . 16 (𝑎𝑈𝑎𝐵)
1413adantl 482 . . . . . . . . . . . . . . 15 ((𝑅 ∈ DivRing ∧ 𝑎𝑈) → 𝑎𝐵)
1514sselda 3583 . . . . . . . . . . . . . 14 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑏𝑎) → 𝑏𝐵)
1615adantrr 752 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → 𝑏𝐵)
17 simprr 795 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → 𝑏0 )
18 eqid 2621 . . . . . . . . . . . . . 14 (.r𝑅) = (.r𝑅)
19 eqid 2621 . . . . . . . . . . . . . 14 (1r𝑅) = (1r𝑅)
20 eqid 2621 . . . . . . . . . . . . . 14 (invr𝑅) = (invr𝑅)
2112, 8, 18, 19, 20drnginvrl 18687 . . . . . . . . . . . . 13 ((𝑅 ∈ DivRing ∧ 𝑏𝐵𝑏0 ) → (((invr𝑅)‘𝑏)(.r𝑅)𝑏) = (1r𝑅))
2211, 16, 17, 21syl3anc 1323 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → (((invr𝑅)‘𝑏)(.r𝑅)𝑏) = (1r𝑅))
233ad2antrr 761 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → 𝑅 ∈ Ring)
24 simplr 791 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → 𝑎𝑈)
2512, 8, 20drnginvrcl 18685 . . . . . . . . . . . . . 14 ((𝑅 ∈ DivRing ∧ 𝑏𝐵𝑏0 ) → ((invr𝑅)‘𝑏) ∈ 𝐵)
2611, 16, 17, 25syl3anc 1323 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → ((invr𝑅)‘𝑏) ∈ 𝐵)
27 simprl 793 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → 𝑏𝑎)
287, 12, 18lidlmcl 19136 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝑎𝑈) ∧ (((invr𝑅)‘𝑏) ∈ 𝐵𝑏𝑎)) → (((invr𝑅)‘𝑏)(.r𝑅)𝑏) ∈ 𝑎)
2923, 24, 26, 27, 28syl22anc 1324 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → (((invr𝑅)‘𝑏)(.r𝑅)𝑏) ∈ 𝑎)
3022, 29eqeltrrd 2699 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → (1r𝑅) ∈ 𝑎)
3130rexlimdvaa 3025 . . . . . . . . . 10 ((𝑅 ∈ DivRing ∧ 𝑎𝑈) → (∃𝑏𝑎 𝑏0 → (1r𝑅) ∈ 𝑎))
3231imp 445 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ ∃𝑏𝑎 𝑏0 ) → (1r𝑅) ∈ 𝑎)
3310, 32syldan 487 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 ≠ { 0 }) → (1r𝑅) ∈ 𝑎)
347, 12, 19lidl1el 19137 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑎𝑈) → ((1r𝑅) ∈ 𝑎𝑎 = 𝐵))
353, 34sylan 488 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝑎𝑈) → ((1r𝑅) ∈ 𝑎𝑎 = 𝐵))
3635adantr 481 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 ≠ { 0 }) → ((1r𝑅) ∈ 𝑎𝑎 = 𝐵))
3733, 36mpbid 222 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 ≠ { 0 }) → 𝑎 = 𝐵)
3837olcd 408 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 ≠ { 0 }) → (𝑎 = { 0 } ∨ 𝑎 = 𝐵))
392, 38pm2.61dane 2877 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑎𝑈) → (𝑎 = { 0 } ∨ 𝑎 = 𝐵))
40 vex 3189 . . . . . 6 𝑎 ∈ V
4140elpr 4169 . . . . 5 (𝑎 ∈ {{ 0 }, 𝐵} ↔ (𝑎 = { 0 } ∨ 𝑎 = 𝐵))
4239, 41sylibr 224 . . . 4 ((𝑅 ∈ DivRing ∧ 𝑎𝑈) → 𝑎 ∈ {{ 0 }, 𝐵})
4342ex 450 . . 3 (𝑅 ∈ DivRing → (𝑎𝑈𝑎 ∈ {{ 0 }, 𝐵}))
4443ssrdv 3589 . 2 (𝑅 ∈ DivRing → 𝑈 ⊆ {{ 0 }, 𝐵})
457, 8lidl0 19138 . . . 4 (𝑅 ∈ Ring → { 0 } ∈ 𝑈)
467, 12lidl1 19139 . . . 4 (𝑅 ∈ Ring → 𝐵𝑈)
47 snex 4869 . . . . . 6 { 0 } ∈ V
48 fvex 6158 . . . . . . 7 (Base‘𝑅) ∈ V
4912, 48eqeltri 2694 . . . . . 6 𝐵 ∈ V
5047, 49prss 4319 . . . . 5 (({ 0 } ∈ 𝑈𝐵𝑈) ↔ {{ 0 }, 𝐵} ⊆ 𝑈)
5150bicomi 214 . . . 4 ({{ 0 }, 𝐵} ⊆ 𝑈 ↔ ({ 0 } ∈ 𝑈𝐵𝑈))
5245, 46, 51sylanbrc 697 . . 3 (𝑅 ∈ Ring → {{ 0 }, 𝐵} ⊆ 𝑈)
533, 52syl 17 . 2 (𝑅 ∈ DivRing → {{ 0 }, 𝐵} ⊆ 𝑈)
5444, 53eqssd 3600 1 (𝑅 ∈ DivRing → 𝑈 = {{ 0 }, 𝐵})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∨ wo 383   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ∃wrex 2908  Vcvv 3186   ⊆ wss 3555  {csn 4148  {cpr 4150  ‘cfv 5847  (class class class)co 6604  Basecbs 15781  .rcmulr 15863  0gc0g 16021  1rcur 18422  Ringcrg 18468  invrcinvr 18592  DivRingcdr 18668  LIdealclidl 19089 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-tpos 7297  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-sca 15878  df-vsca 15879  df-ip 15880  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-minusg 17347  df-sbg 17348  df-subg 17512  df-mgp 18411  df-ur 18423  df-ring 18470  df-oppr 18544  df-dvdsr 18562  df-unit 18563  df-invr 18593  df-drng 18670  df-subrg 18699  df-lmod 18786  df-lss 18852  df-sra 19091  df-rgmod 19092  df-lidl 19093 This theorem is referenced by:  drnglpir  19172
 Copyright terms: Public domain W3C validator