MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drnginvrl Structured version   Visualization version   GIF version

Theorem drnginvrl 19516
Description: Property of the multiplicative inverse in a division ring. (recid2 11306 analog.) (Contributed by NM, 19-Apr-2014.)
Hypotheses
Ref Expression
drnginvrl.b 𝐵 = (Base‘𝑅)
drnginvrl.z 0 = (0g𝑅)
drnginvrl.t · = (.r𝑅)
drnginvrl.u 1 = (1r𝑅)
drnginvrl.i 𝐼 = (invr𝑅)
Assertion
Ref Expression
drnginvrl ((𝑅 ∈ DivRing ∧ 𝑋𝐵𝑋0 ) → ((𝐼𝑋) · 𝑋) = 1 )

Proof of Theorem drnginvrl
StepHypRef Expression
1 drnginvrl.b . . . 4 𝐵 = (Base‘𝑅)
2 eqid 2820 . . . 4 (Unit‘𝑅) = (Unit‘𝑅)
3 drnginvrl.z . . . 4 0 = (0g𝑅)
41, 2, 3drngunit 19502 . . 3 (𝑅 ∈ DivRing → (𝑋 ∈ (Unit‘𝑅) ↔ (𝑋𝐵𝑋0 )))
5 drngring 19504 . . . 4 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
6 drnginvrl.i . . . . . 6 𝐼 = (invr𝑅)
7 drnginvrl.t . . . . . 6 · = (.r𝑅)
8 drnginvrl.u . . . . . 6 1 = (1r𝑅)
92, 6, 7, 8unitlinv 19422 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝑅)) → ((𝐼𝑋) · 𝑋) = 1 )
109ex 415 . . . 4 (𝑅 ∈ Ring → (𝑋 ∈ (Unit‘𝑅) → ((𝐼𝑋) · 𝑋) = 1 ))
115, 10syl 17 . . 3 (𝑅 ∈ DivRing → (𝑋 ∈ (Unit‘𝑅) → ((𝐼𝑋) · 𝑋) = 1 ))
124, 11sylbird 262 . 2 (𝑅 ∈ DivRing → ((𝑋𝐵𝑋0 ) → ((𝐼𝑋) · 𝑋) = 1 ))
13123impib 1111 1 ((𝑅 ∈ DivRing ∧ 𝑋𝐵𝑋0 ) → ((𝐼𝑋) · 𝑋) = 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1082   = wceq 1536  wcel 2113  wne 3015  cfv 6348  (class class class)co 7149  Basecbs 16478  .rcmulr 16561  0gc0g 16708  1rcur 19246  Ringcrg 19292  Unitcui 19384  invrcinvr 19416  DivRingcdr 19497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-tpos 7885  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-er 8282  df-en 8503  df-dom 8504  df-sdom 8505  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11632  df-2 11694  df-3 11695  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-0g 16710  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-grp 18101  df-minusg 18102  df-mgp 19235  df-ur 19247  df-ring 19294  df-oppr 19368  df-dvdsr 19386  df-unit 19387  df-invr 19417  df-drng 19499
This theorem is referenced by:  drngmul0or  19518  lvecvs0or  19875  lssvs0or  19877  lvecinv  19880  lspsnvs  19881  lspfixed  19895  lspsolv  19910  drngnidl  19997  matunitlindflem1  34923  lfl1  36239  eqlkr3  36270  lkrlsp  36271  tendolinv  38274  dochkr1  38647  dochkr1OLDN  38648  lclkrlem2m  38688  hdmapip1  39085  hgmapvvlem2  39093
  Copyright terms: Public domain W3C validator