Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dstfrvunirn Structured version   Visualization version   GIF version

Theorem dstfrvunirn 31732
Description: The limit of all preimage maps by the "less than or equal to" relation is the universe. (Contributed by Thierry Arnoux, 12-Feb-2017.)
Hypotheses
Ref Expression
dstfrv.1 (𝜑𝑃 ∈ Prob)
dstfrv.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
Assertion
Ref Expression
dstfrvunirn (𝜑 ran (𝑛 ∈ ℕ ↦ (𝑋RV/𝑐𝑛)) = dom 𝑃)
Distinct variable groups:   𝑃,𝑛   𝑛,𝑋   𝜑,𝑛

Proof of Theorem dstfrvunirn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1red 10642 . . . . . . . . . 10 ((𝜑𝑥 dom 𝑃) → 1 ∈ ℝ)
2 dstfrv.1 . . . . . . . . . . . 12 (𝜑𝑃 ∈ Prob)
3 dstfrv.2 . . . . . . . . . . . 12 (𝜑𝑋 ∈ (rRndVar‘𝑃))
42, 3rrvvf 31702 . . . . . . . . . . 11 (𝜑𝑋: dom 𝑃⟶ℝ)
54ffvelrnda 6851 . . . . . . . . . 10 ((𝜑𝑥 dom 𝑃) → (𝑋𝑥) ∈ ℝ)
61, 5ifcld 4512 . . . . . . . . 9 ((𝜑𝑥 dom 𝑃) → if((𝑋𝑥) < 1, 1, (𝑋𝑥)) ∈ ℝ)
7 breq2 5070 . . . . . . . . . 10 (1 = if((𝑋𝑥) < 1, 1, (𝑋𝑥)) → (1 ≤ 1 ↔ 1 ≤ if((𝑋𝑥) < 1, 1, (𝑋𝑥))))
8 breq2 5070 . . . . . . . . . 10 ((𝑋𝑥) = if((𝑋𝑥) < 1, 1, (𝑋𝑥)) → (1 ≤ (𝑋𝑥) ↔ 1 ≤ if((𝑋𝑥) < 1, 1, (𝑋𝑥))))
9 1le1 11268 . . . . . . . . . . 11 1 ≤ 1
109a1i 11 . . . . . . . . . 10 (((𝜑𝑥 dom 𝑃) ∧ (𝑋𝑥) < 1) → 1 ≤ 1)
111, 5lenltd 10786 . . . . . . . . . . 11 ((𝜑𝑥 dom 𝑃) → (1 ≤ (𝑋𝑥) ↔ ¬ (𝑋𝑥) < 1))
1211biimpar 480 . . . . . . . . . 10 (((𝜑𝑥 dom 𝑃) ∧ ¬ (𝑋𝑥) < 1) → 1 ≤ (𝑋𝑥))
137, 8, 10, 12ifbothda 4504 . . . . . . . . 9 ((𝜑𝑥 dom 𝑃) → 1 ≤ if((𝑋𝑥) < 1, 1, (𝑋𝑥)))
14 flge1nn 13192 . . . . . . . . 9 ((if((𝑋𝑥) < 1, 1, (𝑋𝑥)) ∈ ℝ ∧ 1 ≤ if((𝑋𝑥) < 1, 1, (𝑋𝑥))) → (⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) ∈ ℕ)
156, 13, 14syl2anc 586 . . . . . . . 8 ((𝜑𝑥 dom 𝑃) → (⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) ∈ ℕ)
1615peano2nnd 11655 . . . . . . 7 ((𝜑𝑥 dom 𝑃) → ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1) ∈ ℕ)
172adantr 483 . . . . . . . 8 ((𝜑𝑥 dom 𝑃) → 𝑃 ∈ Prob)
183adantr 483 . . . . . . . 8 ((𝜑𝑥 dom 𝑃) → 𝑋 ∈ (rRndVar‘𝑃))
1916nnred 11653 . . . . . . . 8 ((𝜑𝑥 dom 𝑃) → ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1) ∈ ℝ)
20 simpr 487 . . . . . . . 8 ((𝜑𝑥 dom 𝑃) → 𝑥 dom 𝑃)
21 breq2 5070 . . . . . . . . . 10 (1 = if((𝑋𝑥) < 1, 1, (𝑋𝑥)) → ((𝑋𝑥) ≤ 1 ↔ (𝑋𝑥) ≤ if((𝑋𝑥) < 1, 1, (𝑋𝑥))))
22 breq2 5070 . . . . . . . . . 10 ((𝑋𝑥) = if((𝑋𝑥) < 1, 1, (𝑋𝑥)) → ((𝑋𝑥) ≤ (𝑋𝑥) ↔ (𝑋𝑥) ≤ if((𝑋𝑥) < 1, 1, (𝑋𝑥))))
235adantr 483 . . . . . . . . . . 11 (((𝜑𝑥 dom 𝑃) ∧ (𝑋𝑥) < 1) → (𝑋𝑥) ∈ ℝ)
24 1red 10642 . . . . . . . . . . 11 (((𝜑𝑥 dom 𝑃) ∧ (𝑋𝑥) < 1) → 1 ∈ ℝ)
25 simpr 487 . . . . . . . . . . 11 (((𝜑𝑥 dom 𝑃) ∧ (𝑋𝑥) < 1) → (𝑋𝑥) < 1)
2623, 24, 25ltled 10788 . . . . . . . . . 10 (((𝜑𝑥 dom 𝑃) ∧ (𝑋𝑥) < 1) → (𝑋𝑥) ≤ 1)
275leidd 11206 . . . . . . . . . . 11 ((𝜑𝑥 dom 𝑃) → (𝑋𝑥) ≤ (𝑋𝑥))
2827adantr 483 . . . . . . . . . 10 (((𝜑𝑥 dom 𝑃) ∧ ¬ (𝑋𝑥) < 1) → (𝑋𝑥) ≤ (𝑋𝑥))
2921, 22, 26, 28ifbothda 4504 . . . . . . . . 9 ((𝜑𝑥 dom 𝑃) → (𝑋𝑥) ≤ if((𝑋𝑥) < 1, 1, (𝑋𝑥)))
30 fllep1 13172 . . . . . . . . . 10 (if((𝑋𝑥) < 1, 1, (𝑋𝑥)) ∈ ℝ → if((𝑋𝑥) < 1, 1, (𝑋𝑥)) ≤ ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1))
316, 30syl 17 . . . . . . . . 9 ((𝜑𝑥 dom 𝑃) → if((𝑋𝑥) < 1, 1, (𝑋𝑥)) ≤ ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1))
325, 6, 19, 29, 31letrd 10797 . . . . . . . 8 ((𝜑𝑥 dom 𝑃) → (𝑋𝑥) ≤ ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1))
3317, 18, 19, 20, 32dstfrvel 31731 . . . . . . 7 ((𝜑𝑥 dom 𝑃) → 𝑥 ∈ (𝑋RV/𝑐 ≤ ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1)))
34 oveq2 7164 . . . . . . . . 9 (𝑛 = ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1) → (𝑋RV/𝑐𝑛) = (𝑋RV/𝑐 ≤ ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1)))
3534eleq2d 2898 . . . . . . . 8 (𝑛 = ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1) → (𝑥 ∈ (𝑋RV/𝑐𝑛) ↔ 𝑥 ∈ (𝑋RV/𝑐 ≤ ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1))))
3635rspcev 3623 . . . . . . 7 ((((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1) ∈ ℕ ∧ 𝑥 ∈ (𝑋RV/𝑐 ≤ ((⌊‘if((𝑋𝑥) < 1, 1, (𝑋𝑥))) + 1))) → ∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋RV/𝑐𝑛))
3716, 33, 36syl2anc 586 . . . . . 6 ((𝜑𝑥 dom 𝑃) → ∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋RV/𝑐𝑛))
3837ex 415 . . . . 5 (𝜑 → (𝑥 dom 𝑃 → ∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋RV/𝑐𝑛)))
392adantr 483 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑃 ∈ Prob)
403adantr 483 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ (rRndVar‘𝑃))
41 simpr 487 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
4241nnred 11653 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
4339, 40, 42orvclteel 31730 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑋RV/𝑐𝑛) ∈ dom 𝑃)
44 elunii 4843 . . . . . . . 8 ((𝑥 ∈ (𝑋RV/𝑐𝑛) ∧ (𝑋RV/𝑐𝑛) ∈ dom 𝑃) → 𝑥 dom 𝑃)
4544expcom 416 . . . . . . 7 ((𝑋RV/𝑐𝑛) ∈ dom 𝑃 → (𝑥 ∈ (𝑋RV/𝑐𝑛) → 𝑥 dom 𝑃))
4643, 45syl 17 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑥 ∈ (𝑋RV/𝑐𝑛) → 𝑥 dom 𝑃))
4746rexlimdva 3284 . . . . 5 (𝜑 → (∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋RV/𝑐𝑛) → 𝑥 dom 𝑃))
4838, 47impbid 214 . . . 4 (𝜑 → (𝑥 dom 𝑃 ↔ ∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋RV/𝑐𝑛)))
49 eliun 4923 . . . 4 (𝑥 𝑛 ∈ ℕ (𝑋RV/𝑐𝑛) ↔ ∃𝑛 ∈ ℕ 𝑥 ∈ (𝑋RV/𝑐𝑛))
5048, 49syl6bbr 291 . . 3 (𝜑 → (𝑥 dom 𝑃𝑥 𝑛 ∈ ℕ (𝑋RV/𝑐𝑛)))
5150eqrdv 2819 . 2 (𝜑 dom 𝑃 = 𝑛 ∈ ℕ (𝑋RV/𝑐𝑛))
52 ovex 7189 . . 3 (𝑋RV/𝑐𝑛) ∈ V
5352dfiun3 5837 . 2 𝑛 ∈ ℕ (𝑋RV/𝑐𝑛) = ran (𝑛 ∈ ℕ ↦ (𝑋RV/𝑐𝑛))
5451, 53syl6req 2873 1 (𝜑 ran (𝑛 ∈ ℕ ↦ (𝑋RV/𝑐𝑛)) = dom 𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wrex 3139  ifcif 4467   cuni 4838   ciun 4919   class class class wbr 5066  cmpt 5146  dom cdm 5555  ran crn 5556  cfv 6355  (class class class)co 7156  cr 10536  1c1 10538   + caddc 10540   < clt 10675  cle 10676  cn 11638  cfl 13161  Probcprb 31665  rRndVarcrrv 31698  RV/𝑐corvc 31713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-ac2 9885  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-acn 9371  df-ac 9542  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-ioo 12743  df-ioc 12744  df-fl 13163  df-topgen 16717  df-top 21502  df-bases 21554  df-cld 21627  df-esum 31287  df-siga 31368  df-sigagen 31398  df-brsiga 31441  df-meas 31455  df-mbfm 31509  df-prob 31666  df-rrv 31699  df-orvc 31714
This theorem is referenced by:  dstfrvclim1  31735
  Copyright terms: Public domain W3C validator