![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dya2iocnei | Structured version Visualization version GIF version |
Description: For any point of an open set of the usual topology on (ℝ × ℝ) there is a closed-below open-above dyadic rational square which contains that point and is entirely in the open set. (Contributed by Thierry Arnoux, 21-Sep-2017.) |
Ref | Expression |
---|---|
sxbrsiga.0 | ⊢ 𝐽 = (topGen‘ran (,)) |
dya2ioc.1 | ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) |
dya2ioc.2 | ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) |
Ref | Expression |
---|---|
dya2iocnei | ⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elunii 4593 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝐴 ∈ (𝐽 ×t 𝐽)) → 𝑋 ∈ ∪ (𝐽 ×t 𝐽)) | |
2 | 1 | ancoms 468 | . . 3 ⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ ∪ (𝐽 ×t 𝐽)) |
3 | sxbrsiga.0 | . . . 4 ⊢ 𝐽 = (topGen‘ran (,)) | |
4 | 3 | tpr2uni 30260 | . . 3 ⊢ ∪ (𝐽 ×t 𝐽) = (ℝ × ℝ) |
5 | 2, 4 | syl6eleq 2849 | . 2 ⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ (ℝ × ℝ)) |
6 | eqid 2760 | . . 3 ⊢ (𝑢 ∈ ℝ, 𝑣 ∈ ℝ ↦ (𝑢 + (i · 𝑣))) = (𝑢 ∈ ℝ, 𝑣 ∈ ℝ ↦ (𝑢 + (i · 𝑣))) | |
7 | eqid 2760 | . . 3 ⊢ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) = ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) | |
8 | 3, 6, 7 | tpr2rico 30267 | . 2 ⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → ∃𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓))(𝑋 ∈ 𝑟 ∧ 𝑟 ⊆ 𝐴)) |
9 | anass 684 | . . . . 5 ⊢ (((𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ∧ 𝑋 ∈ 𝑟) ∧ 𝑟 ⊆ 𝐴) ↔ (𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ∧ (𝑋 ∈ 𝑟 ∧ 𝑟 ⊆ 𝐴))) | |
10 | dya2ioc.1 | . . . . . . . . 9 ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) | |
11 | dya2ioc.2 | . . . . . . . . 9 ⊢ 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣)) | |
12 | 3, 10, 11, 7 | dya2iocnrect 30652 | . . . . . . . 8 ⊢ ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ∧ 𝑋 ∈ 𝑟) → ∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟)) |
13 | 12 | 3expb 1114 | . . . . . . 7 ⊢ ((𝑋 ∈ (ℝ × ℝ) ∧ (𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ∧ 𝑋 ∈ 𝑟)) → ∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟)) |
14 | 13 | anim1i 593 | . . . . . 6 ⊢ (((𝑋 ∈ (ℝ × ℝ) ∧ (𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ∧ 𝑋 ∈ 𝑟)) ∧ 𝑟 ⊆ 𝐴) → (∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴)) |
15 | 14 | anasss 682 | . . . . 5 ⊢ ((𝑋 ∈ (ℝ × ℝ) ∧ ((𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ∧ 𝑋 ∈ 𝑟) ∧ 𝑟 ⊆ 𝐴)) → (∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴)) |
16 | 9, 15 | sylan2br 494 | . . . 4 ⊢ ((𝑋 ∈ (ℝ × ℝ) ∧ (𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ∧ (𝑋 ∈ 𝑟 ∧ 𝑟 ⊆ 𝐴))) → (∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴)) |
17 | r19.41v 3227 | . . . . 5 ⊢ (∃𝑏 ∈ ran 𝑅((𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴) ↔ (∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴)) | |
18 | simpll 807 | . . . . . . 7 ⊢ (((𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴) → 𝑋 ∈ 𝑏) | |
19 | simplr 809 | . . . . . . . 8 ⊢ (((𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴) → 𝑏 ⊆ 𝑟) | |
20 | simpr 479 | . . . . . . . 8 ⊢ (((𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴) → 𝑟 ⊆ 𝐴) | |
21 | 19, 20 | sstrd 3754 | . . . . . . 7 ⊢ (((𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴) → 𝑏 ⊆ 𝐴) |
22 | 18, 21 | jca 555 | . . . . . 6 ⊢ (((𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴) → (𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)) |
23 | 22 | reximi 3149 | . . . . 5 ⊢ (∃𝑏 ∈ ran 𝑅((𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)) |
24 | 17, 23 | sylbir 225 | . . . 4 ⊢ ((∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑟) ∧ 𝑟 ⊆ 𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)) |
25 | 16, 24 | syl 17 | . . 3 ⊢ ((𝑋 ∈ (ℝ × ℝ) ∧ (𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓)) ∧ (𝑋 ∈ 𝑟 ∧ 𝑟 ⊆ 𝐴))) → ∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)) |
26 | 25 | rexlimdvaa 3170 | . 2 ⊢ (𝑋 ∈ (ℝ × ℝ) → (∃𝑟 ∈ ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓))(𝑋 ∈ 𝑟 ∧ 𝑟 ⊆ 𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴))) |
27 | 5, 8, 26 | sylc 65 | 1 ⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋 ∈ 𝑏 ∧ 𝑏 ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∃wrex 3051 ⊆ wss 3715 ∪ cuni 4588 × cxp 5264 ran crn 5267 ‘cfv 6049 (class class class)co 6813 ↦ cmpt2 6815 ℝcr 10127 1c1 10129 ici 10130 + caddc 10131 · cmul 10133 / cdiv 10876 2c2 11262 ℤcz 11569 (,)cioo 12368 [,)cico 12370 ↑cexp 13054 topGenctg 16300 ×t ctx 21565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-inf2 8711 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-pre-sup 10206 ax-addf 10207 ax-mulf 10208 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-of 7062 df-om 7231 df-1st 7333 df-2nd 7334 df-supp 7464 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-2o 7730 df-oadd 7733 df-er 7911 df-map 8025 df-pm 8026 df-ixp 8075 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-fsupp 8441 df-fi 8482 df-sup 8513 df-inf 8514 df-oi 8580 df-card 8955 df-cda 9182 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-7 11276 df-8 11277 df-9 11278 df-n0 11485 df-z 11570 df-dec 11686 df-uz 11880 df-q 11982 df-rp 12026 df-xneg 12139 df-xadd 12140 df-xmul 12141 df-ioo 12372 df-ioc 12373 df-ico 12374 df-icc 12375 df-fz 12520 df-fzo 12660 df-fl 12787 df-mod 12863 df-seq 12996 df-exp 13055 df-fac 13255 df-bc 13284 df-hash 13312 df-shft 14006 df-cj 14038 df-re 14039 df-im 14040 df-sqrt 14174 df-abs 14175 df-limsup 14401 df-clim 14418 df-rlim 14419 df-sum 14616 df-ef 14997 df-sin 14999 df-cos 15000 df-pi 15002 df-struct 16061 df-ndx 16062 df-slot 16063 df-base 16065 df-sets 16066 df-ress 16067 df-plusg 16156 df-mulr 16157 df-starv 16158 df-sca 16159 df-vsca 16160 df-ip 16161 df-tset 16162 df-ple 16163 df-ds 16166 df-unif 16167 df-hom 16168 df-cco 16169 df-rest 16285 df-topn 16286 df-0g 16304 df-gsum 16305 df-topgen 16306 df-pt 16307 df-prds 16310 df-xrs 16364 df-qtop 16369 df-imas 16370 df-xps 16372 df-mre 16448 df-mrc 16449 df-acs 16451 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-submnd 17537 df-mulg 17742 df-cntz 17950 df-cmn 18395 df-psmet 19940 df-xmet 19941 df-met 19942 df-bl 19943 df-mopn 19944 df-fbas 19945 df-fg 19946 df-cnfld 19949 df-refld 20153 df-top 20901 df-topon 20918 df-topsp 20939 df-bases 20952 df-cld 21025 df-ntr 21026 df-cls 21027 df-nei 21104 df-lp 21142 df-perf 21143 df-cn 21233 df-cnp 21234 df-haus 21321 df-cmp 21392 df-tx 21567 df-hmeo 21760 df-fil 21851 df-fm 21943 df-flim 21944 df-flf 21945 df-fcls 21946 df-xms 22326 df-ms 22327 df-tms 22328 df-cncf 22882 df-cfil 23253 df-cmet 23255 df-cms 23332 df-limc 23829 df-dv 23830 df-log 24502 df-cxp 24503 df-logb 24702 |
This theorem is referenced by: dya2iocuni 30654 |
Copyright terms: Public domain | W3C validator |