MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpinv Structured version   Visualization version   GIF version

Theorem frgpinv 18892
Description: The inverse of an element of the free group. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frgpadd.w 𝑊 = ( I ‘Word (𝐼 × 2o))
frgpadd.g 𝐺 = (freeGrp‘𝐼)
frgpadd.r = ( ~FG𝐼)
frgpinv.n 𝑁 = (invg𝐺)
frgpinv.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
Assertion
Ref Expression
frgpinv (𝐴𝑊 → (𝑁‘[𝐴] ) = [(𝑀 ∘ (reverse‘𝐴))] )
Distinct variable groups:   𝑦,𝑧,𝐼   𝑦, ,𝑧   𝑦,𝑊,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧)   𝐺(𝑦,𝑧)   𝑀(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem frgpinv
Dummy variables 𝑛 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgpadd.w . . . . . . . . 9 𝑊 = ( I ‘Word (𝐼 × 2o))
2 fviss 6743 . . . . . . . . 9 ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o)
31, 2eqsstri 4003 . . . . . . . 8 𝑊 ⊆ Word (𝐼 × 2o)
43sseli 3965 . . . . . . 7 (𝐴𝑊𝐴 ∈ Word (𝐼 × 2o))
5 revcl 14125 . . . . . . 7 (𝐴 ∈ Word (𝐼 × 2o) → (reverse‘𝐴) ∈ Word (𝐼 × 2o))
64, 5syl 17 . . . . . 6 (𝐴𝑊 → (reverse‘𝐴) ∈ Word (𝐼 × 2o))
7 frgpinv.m . . . . . . 7 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
87efgmf 18841 . . . . . 6 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)
9 wrdco 14195 . . . . . 6 (((reverse‘𝐴) ∈ Word (𝐼 × 2o) ∧ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)) → (𝑀 ∘ (reverse‘𝐴)) ∈ Word (𝐼 × 2o))
106, 8, 9sylancl 588 . . . . 5 (𝐴𝑊 → (𝑀 ∘ (reverse‘𝐴)) ∈ Word (𝐼 × 2o))
111efgrcl 18843 . . . . . 6 (𝐴𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)))
1211simprd 498 . . . . 5 (𝐴𝑊𝑊 = Word (𝐼 × 2o))
1310, 12eleqtrrd 2918 . . . 4 (𝐴𝑊 → (𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊)
14 frgpadd.g . . . . 5 𝐺 = (freeGrp‘𝐼)
15 frgpadd.r . . . . 5 = ( ~FG𝐼)
16 eqid 2823 . . . . 5 (+g𝐺) = (+g𝐺)
171, 14, 15, 16frgpadd 18891 . . . 4 ((𝐴𝑊 ∧ (𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊) → ([𝐴] (+g𝐺)[(𝑀 ∘ (reverse‘𝐴))] ) = [(𝐴 ++ (𝑀 ∘ (reverse‘𝐴)))] )
1813, 17mpdan 685 . . 3 (𝐴𝑊 → ([𝐴] (+g𝐺)[(𝑀 ∘ (reverse‘𝐴))] ) = [(𝐴 ++ (𝑀 ∘ (reverse‘𝐴)))] )
191, 15efger 18846 . . . . 5 Er 𝑊
2019a1i 11 . . . 4 (𝐴𝑊 Er 𝑊)
21 eqid 2823 . . . . 5 (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩))) = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
221, 15, 7, 21efginvrel2 18855 . . . 4 (𝐴𝑊 → (𝐴 ++ (𝑀 ∘ (reverse‘𝐴))) ∅)
2320, 22erthi 8342 . . 3 (𝐴𝑊 → [(𝐴 ++ (𝑀 ∘ (reverse‘𝐴)))] = [∅] )
2414, 15frgp0 18888 . . . . . 6 (𝐼 ∈ V → (𝐺 ∈ Grp ∧ [∅] = (0g𝐺)))
2524adantr 483 . . . . 5 ((𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)) → (𝐺 ∈ Grp ∧ [∅] = (0g𝐺)))
2611, 25syl 17 . . . 4 (𝐴𝑊 → (𝐺 ∈ Grp ∧ [∅] = (0g𝐺)))
2726simprd 498 . . 3 (𝐴𝑊 → [∅] = (0g𝐺))
2818, 23, 273eqtrd 2862 . 2 (𝐴𝑊 → ([𝐴] (+g𝐺)[(𝑀 ∘ (reverse‘𝐴))] ) = (0g𝐺))
2926simpld 497 . . 3 (𝐴𝑊𝐺 ∈ Grp)
30 eqid 2823 . . . 4 (Base‘𝐺) = (Base‘𝐺)
3114, 15, 1, 30frgpeccl 18889 . . 3 (𝐴𝑊 → [𝐴] ∈ (Base‘𝐺))
3214, 15, 1, 30frgpeccl 18889 . . . 4 ((𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊 → [(𝑀 ∘ (reverse‘𝐴))] ∈ (Base‘𝐺))
3313, 32syl 17 . . 3 (𝐴𝑊 → [(𝑀 ∘ (reverse‘𝐴))] ∈ (Base‘𝐺))
34 eqid 2823 . . . 4 (0g𝐺) = (0g𝐺)
35 frgpinv.n . . . 4 𝑁 = (invg𝐺)
3630, 16, 34, 35grpinvid1 18156 . . 3 ((𝐺 ∈ Grp ∧ [𝐴] ∈ (Base‘𝐺) ∧ [(𝑀 ∘ (reverse‘𝐴))] ∈ (Base‘𝐺)) → ((𝑁‘[𝐴] ) = [(𝑀 ∘ (reverse‘𝐴))] ↔ ([𝐴] (+g𝐺)[(𝑀 ∘ (reverse‘𝐴))] ) = (0g𝐺)))
3729, 31, 33, 36syl3anc 1367 . 2 (𝐴𝑊 → ((𝑁‘[𝐴] ) = [(𝑀 ∘ (reverse‘𝐴))] ↔ ([𝐴] (+g𝐺)[(𝑀 ∘ (reverse‘𝐴))] ) = (0g𝐺)))
3828, 37mpbird 259 1 (𝐴𝑊 → (𝑁‘[𝐴] ) = [(𝑀 ∘ (reverse‘𝐴))] )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  Vcvv 3496  cdif 3935  c0 4293  cop 4575  cotp 4577  cmpt 5148   I cid 5461   × cxp 5555  ccom 5561  wf 6353  cfv 6357  (class class class)co 7158  cmpo 7160  1oc1o 8097  2oc2o 8098   Er wer 8288  [cec 8289  0cc0 10539  ...cfz 12895  chash 13693  Word cword 13864   ++ cconcat 13924   splice csplice 14113  reversecreverse 14122  ⟨“cs2 14205  Basecbs 16485  +gcplusg 16567  0gc0g 16715  Grpcgrp 18105  invgcminusg 18106   ~FG cefg 18834  freeGrpcfrgp 18835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-ot 4578  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-ec 8293  df-qs 8297  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-xnn0 11971  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-lsw 13917  df-concat 13925  df-s1 13952  df-substr 14005  df-pfx 14035  df-splice 14114  df-reverse 14123  df-s2 14212  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-0g 16717  df-imas 16783  df-qus 16784  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-frmd 18016  df-grp 18108  df-minusg 18109  df-efg 18837  df-frgp 18838
This theorem is referenced by:  vrgpinv  18897
  Copyright terms: Public domain W3C validator