MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzm1ndvds Structured version   Visualization version   GIF version

Theorem fzm1ndvds 15038
Description: No number between 1 and 𝑀 − 1 divides 𝑀. (Contributed by Mario Carneiro, 24-Jan-2015.)
Assertion
Ref Expression
fzm1ndvds ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → ¬ 𝑀𝑁)

Proof of Theorem fzm1ndvds
StepHypRef Expression
1 elfzle2 12342 . . . . 5 (𝑁 ∈ (1...(𝑀 − 1)) → 𝑁 ≤ (𝑀 − 1))
21adantl 482 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → 𝑁 ≤ (𝑀 − 1))
3 elfzelz 12339 . . . . . 6 (𝑁 ∈ (1...(𝑀 − 1)) → 𝑁 ∈ ℤ)
43adantl 482 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → 𝑁 ∈ ℤ)
5 nnz 11396 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
65adantr 481 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → 𝑀 ∈ ℤ)
7 zltlem1 11427 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 < 𝑀𝑁 ≤ (𝑀 − 1)))
84, 6, 7syl2anc 693 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → (𝑁 < 𝑀𝑁 ≤ (𝑀 − 1)))
92, 8mpbird 247 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → 𝑁 < 𝑀)
10 elfznn 12367 . . . . . 6 (𝑁 ∈ (1...(𝑀 − 1)) → 𝑁 ∈ ℕ)
1110adantl 482 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → 𝑁 ∈ ℕ)
1211nnred 11032 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → 𝑁 ∈ ℝ)
13 nnre 11024 . . . . 5 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
1413adantr 481 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → 𝑀 ∈ ℝ)
1512, 14ltnled 10181 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → (𝑁 < 𝑀 ↔ ¬ 𝑀𝑁))
169, 15mpbid 222 . 2 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → ¬ 𝑀𝑁)
17 dvdsle 15026 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁𝑀𝑁))
186, 11, 17syl2anc 693 . 2 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → (𝑀𝑁𝑀𝑁))
1916, 18mtod 189 1 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → ¬ 𝑀𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  wcel 1989   class class class wbr 4651  (class class class)co 6647  cr 9932  1c1 9934   < clt 10071  cle 10072  cmin 10263  cn 11017  cz 11374  ...cfz 12323  cdvds 14977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-1st 7165  df-2nd 7166  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-er 7739  df-en 7953  df-dom 7954  df-sdom 7955  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-nn 11018  df-n0 11290  df-z 11375  df-uz 11685  df-fz 12324  df-dvds 14978
This theorem is referenced by:  prmdivdiv  15486  reumodprminv  15503  wilthlem1  24788  wilthlem2  24789  wilthlem3  24790  lgseisenlem1  25094  lgseisenlem2  25095  lgseisenlem3  25096  lgsquadlem3  25101  etransclem44  40264
  Copyright terms: Public domain W3C validator