MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumsub Structured version   Visualization version   GIF version

Theorem gsumsub 18394
Description: The difference of two group sums. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 6-Jun-2019.)
Hypotheses
Ref Expression
gsumsub.b 𝐵 = (Base‘𝐺)
gsumsub.z 0 = (0g𝐺)
gsumsub.m = (-g𝐺)
gsumsub.g (𝜑𝐺 ∈ Abel)
gsumsub.a (𝜑𝐴𝑉)
gsumsub.f (𝜑𝐹:𝐴𝐵)
gsumsub.h (𝜑𝐻:𝐴𝐵)
gsumsub.fn (𝜑𝐹 finSupp 0 )
gsumsub.hn (𝜑𝐻 finSupp 0 )
Assertion
Ref Expression
gsumsub (𝜑 → (𝐺 Σg (𝐹𝑓 𝐻)) = ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)))

Proof of Theorem gsumsub
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumsub.b . . . 4 𝐵 = (Base‘𝐺)
2 gsumsub.z . . . 4 0 = (0g𝐺)
3 eqid 2651 . . . 4 (+g𝐺) = (+g𝐺)
4 gsumsub.g . . . . 5 (𝜑𝐺 ∈ Abel)
5 ablcmn 18245 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ CMnd)
64, 5syl 17 . . . 4 (𝜑𝐺 ∈ CMnd)
7 gsumsub.a . . . 4 (𝜑𝐴𝑉)
8 gsumsub.f . . . 4 (𝜑𝐹:𝐴𝐵)
9 eqid 2651 . . . . . . 7 (invg𝐺) = (invg𝐺)
10 ablgrp 18244 . . . . . . . 8 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
114, 10syl 17 . . . . . . 7 (𝜑𝐺 ∈ Grp)
121, 9, 11grpinvf1o 17532 . . . . . 6 (𝜑 → (invg𝐺):𝐵1-1-onto𝐵)
13 f1of 6175 . . . . . 6 ((invg𝐺):𝐵1-1-onto𝐵 → (invg𝐺):𝐵𝐵)
1412, 13syl 17 . . . . 5 (𝜑 → (invg𝐺):𝐵𝐵)
15 gsumsub.h . . . . 5 (𝜑𝐻:𝐴𝐵)
16 fco 6096 . . . . 5 (((invg𝐺):𝐵𝐵𝐻:𝐴𝐵) → ((invg𝐺) ∘ 𝐻):𝐴𝐵)
1714, 15, 16syl2anc 694 . . . 4 (𝜑 → ((invg𝐺) ∘ 𝐻):𝐴𝐵)
18 gsumsub.fn . . . 4 (𝜑𝐹 finSupp 0 )
19 fvex 6239 . . . . . . 7 (0g𝐺) ∈ V
202, 19eqeltri 2726 . . . . . 6 0 ∈ V
2120a1i 11 . . . . 5 (𝜑0 ∈ V)
22 fvex 6239 . . . . . . 7 (Base‘𝐺) ∈ V
231, 22eqeltri 2726 . . . . . 6 𝐵 ∈ V
2423a1i 11 . . . . 5 (𝜑𝐵 ∈ V)
25 gsumsub.hn . . . . 5 (𝜑𝐻 finSupp 0 )
262, 9grpinvid 17523 . . . . . 6 (𝐺 ∈ Grp → ((invg𝐺)‘ 0 ) = 0 )
2711, 26syl 17 . . . . 5 (𝜑 → ((invg𝐺)‘ 0 ) = 0 )
2821, 15, 14, 7, 24, 25, 27fsuppco2 8349 . . . 4 (𝜑 → ((invg𝐺) ∘ 𝐻) finSupp 0 )
291, 2, 3, 6, 7, 8, 17, 18, 28gsumadd 18369 . . 3 (𝜑 → (𝐺 Σg (𝐹𝑓 (+g𝐺)((invg𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g𝐺)(𝐺 Σg ((invg𝐺) ∘ 𝐻))))
301, 2, 9, 4, 7, 15, 25gsuminv 18392 . . . 4 (𝜑 → (𝐺 Σg ((invg𝐺) ∘ 𝐻)) = ((invg𝐺)‘(𝐺 Σg 𝐻)))
3130oveq2d 6706 . . 3 (𝜑 → ((𝐺 Σg 𝐹)(+g𝐺)(𝐺 Σg ((invg𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝐻))))
3229, 31eqtrd 2685 . 2 (𝜑 → (𝐺 Σg (𝐹𝑓 (+g𝐺)((invg𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝐻))))
338ffvelrnda 6399 . . . . . 6 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ 𝐵)
3415ffvelrnda 6399 . . . . . 6 ((𝜑𝑘𝐴) → (𝐻𝑘) ∈ 𝐵)
35 gsumsub.m . . . . . . 7 = (-g𝐺)
361, 3, 9, 35grpsubval 17512 . . . . . 6 (((𝐹𝑘) ∈ 𝐵 ∧ (𝐻𝑘) ∈ 𝐵) → ((𝐹𝑘) (𝐻𝑘)) = ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘))))
3733, 34, 36syl2anc 694 . . . . 5 ((𝜑𝑘𝐴) → ((𝐹𝑘) (𝐻𝑘)) = ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘))))
3837mpteq2dva 4777 . . . 4 (𝜑 → (𝑘𝐴 ↦ ((𝐹𝑘) (𝐻𝑘))) = (𝑘𝐴 ↦ ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘)))))
398feqmptd 6288 . . . . 5 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
4015feqmptd 6288 . . . . 5 (𝜑𝐻 = (𝑘𝐴 ↦ (𝐻𝑘)))
417, 33, 34, 39, 40offval2 6956 . . . 4 (𝜑 → (𝐹𝑓 𝐻) = (𝑘𝐴 ↦ ((𝐹𝑘) (𝐻𝑘))))
42 fvexd 6241 . . . . 5 ((𝜑𝑘𝐴) → ((invg𝐺)‘(𝐻𝑘)) ∈ V)
4314feqmptd 6288 . . . . . 6 (𝜑 → (invg𝐺) = (𝑥𝐵 ↦ ((invg𝐺)‘𝑥)))
44 fveq2 6229 . . . . . 6 (𝑥 = (𝐻𝑘) → ((invg𝐺)‘𝑥) = ((invg𝐺)‘(𝐻𝑘)))
4534, 40, 43, 44fmptco 6436 . . . . 5 (𝜑 → ((invg𝐺) ∘ 𝐻) = (𝑘𝐴 ↦ ((invg𝐺)‘(𝐻𝑘))))
467, 33, 42, 39, 45offval2 6956 . . . 4 (𝜑 → (𝐹𝑓 (+g𝐺)((invg𝐺) ∘ 𝐻)) = (𝑘𝐴 ↦ ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘)))))
4738, 41, 463eqtr4d 2695 . . 3 (𝜑 → (𝐹𝑓 𝐻) = (𝐹𝑓 (+g𝐺)((invg𝐺) ∘ 𝐻)))
4847oveq2d 6706 . 2 (𝜑 → (𝐺 Σg (𝐹𝑓 𝐻)) = (𝐺 Σg (𝐹𝑓 (+g𝐺)((invg𝐺) ∘ 𝐻))))
491, 2, 6, 7, 8, 18gsumcl 18362 . . 3 (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵)
501, 2, 6, 7, 15, 25gsumcl 18362 . . 3 (𝜑 → (𝐺 Σg 𝐻) ∈ 𝐵)
511, 3, 9, 35grpsubval 17512 . . 3 (((𝐺 Σg 𝐹) ∈ 𝐵 ∧ (𝐺 Σg 𝐻) ∈ 𝐵) → ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)) = ((𝐺 Σg 𝐹)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝐻))))
5249, 50, 51syl2anc 694 . 2 (𝜑 → ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)) = ((𝐺 Σg 𝐹)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝐻))))
5332, 48, 523eqtr4d 2695 1 (𝜑 → (𝐺 Σg (𝐹𝑓 𝐻)) = ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  Vcvv 3231   class class class wbr 4685  cmpt 4762  ccom 5147  wf 5922  1-1-ontowf1o 5925  cfv 5926  (class class class)co 6690  𝑓 cof 6937   finSupp cfsupp 8316  Basecbs 15904  +gcplusg 15988  0gc0g 16147   Σg cgsu 16148  Grpcgrp 17469  invgcminusg 17470  -gcsg 17471  CMndccmn 18239  Abelcabl 18240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-seq 12842  df-hash 13158  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-0g 16149  df-gsum 16150  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-grp 17472  df-minusg 17473  df-sbg 17474  df-ghm 17705  df-cntz 17796  df-cmn 18241  df-abl 18242
This theorem is referenced by:  gsummptfssub  18395  tsmsxplem2  22004
  Copyright terms: Public domain W3C validator