MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iprod Structured version   Visualization version   GIF version

Theorem iprod 14456
Description: Series product with an upper integer index set (i.e. an infinite product.) (Contributed by Scott Fenton, 5-Dec-2017.)
Hypotheses
Ref Expression
zprod.1 𝑍 = (ℤ𝑀)
zprod.2 (𝜑𝑀 ∈ ℤ)
zprod.3 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
iprod.4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
iprod.5 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
iprod (𝜑 → ∏𝑘𝑍 𝐵 = ( ⇝ ‘seq𝑀( · , 𝐹)))
Distinct variable groups:   𝐵,𝑛,𝑦   𝑘,𝐹   𝑘,𝑛,𝜑,𝑦   𝑘,𝑀,𝑦   𝜑,𝑛,𝑦   𝑘,𝑍,𝑛,𝑦
Allowed substitution hints:   𝐵(𝑘)   𝐹(𝑦,𝑛)   𝑀(𝑛)

Proof of Theorem iprod
StepHypRef Expression
1 zprod.1 . 2 𝑍 = (ℤ𝑀)
2 zprod.2 . 2 (𝜑𝑀 ∈ ℤ)
3 zprod.3 . 2 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
4 ssid 3586 . . 3 𝑍𝑍
54a1i 11 . 2 (𝜑𝑍𝑍)
6 iprod.4 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
7 iftrue 4041 . . . 4 (𝑘𝑍 → if(𝑘𝑍, 𝐵, 1) = 𝐵)
87adantl 480 . . 3 ((𝜑𝑘𝑍) → if(𝑘𝑍, 𝐵, 1) = 𝐵)
96, 8eqtr4d 2646 . 2 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝑍, 𝐵, 1))
10 iprod.5 . 2 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
111, 2, 3, 5, 9, 10zprod 14455 1 (𝜑 → ∏𝑘𝑍 𝐵 = ( ⇝ ‘seq𝑀( · , 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wex 1694  wcel 1976  wne 2779  wrex 2896  wss 3539  ifcif 4035   class class class wbr 4577  cfv 5790  cc 9791  0cc0 9793  1c1 9794   · cmul 9798  cz 11213  cuz 11522  seqcseq 12621  cli 14012  cprod 14423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-inf2 8399  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-1st 7037  df-2nd 7038  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-oadd 7429  df-er 7607  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-oi 8276  df-card 8626  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-nn 10871  df-2 10929  df-n0 11143  df-z 11214  df-uz 11523  df-rp 11668  df-fz 12156  df-fzo 12293  df-seq 12622  df-exp 12681  df-hash 12938  df-cj 13636  df-re 13637  df-im 13638  df-sqrt 13772  df-abs 13773  df-clim 14016  df-prod 14424
This theorem is referenced by:  iprodclim  14517  iprodclim2  14518  iprodclim3  14519  iprodcl  14520
  Copyright terms: Public domain W3C validator