MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isercolllem3 Structured version   Visualization version   GIF version

Theorem isercolllem3 14331
Description: Lemma for isercoll 14332. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
isercoll.z 𝑍 = (ℤ𝑀)
isercoll.m (𝜑𝑀 ∈ ℤ)
isercoll.g (𝜑𝐺:ℕ⟶𝑍)
isercoll.i ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
isercoll.0 ((𝜑𝑛 ∈ (𝑍 ∖ ran 𝐺)) → (𝐹𝑛) = 0)
isercoll.f ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ ℂ)
isercoll.h ((𝜑𝑘 ∈ ℕ) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
Assertion
Ref Expression
isercolllem3 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (seq𝑀( + , 𝐹)‘𝑁) = (seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))))
Distinct variable groups:   𝑘,𝑛,𝐹   𝑘,𝑁,𝑛   𝜑,𝑘,𝑛   𝑘,𝐺,𝑛   𝑘,𝐻,𝑛   𝑘,𝑀,𝑛   𝑛,𝑍
Allowed substitution hint:   𝑍(𝑘)

Proof of Theorem isercolllem3
StepHypRef Expression
1 addid2 10163 . . 3 (𝑛 ∈ ℂ → (0 + 𝑛) = 𝑛)
21adantl 482 . 2 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑛 ∈ ℂ) → (0 + 𝑛) = 𝑛)
3 addid1 10160 . . 3 (𝑛 ∈ ℂ → (𝑛 + 0) = 𝑛)
43adantl 482 . 2 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑛 ∈ ℂ) → (𝑛 + 0) = 𝑛)
5 addcl 9962 . . 3 ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑛 + 𝑘) ∈ ℂ)
65adantl 482 . 2 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ (𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ)) → (𝑛 + 𝑘) ∈ ℂ)
7 0cnd 9977 . 2 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 0 ∈ ℂ)
8 cnvimass 5444 . . . . 5 (𝐺 “ (𝑀...𝑁)) ⊆ dom 𝐺
9 isercoll.g . . . . . . 7 (𝜑𝐺:ℕ⟶𝑍)
109adantr 481 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 𝐺:ℕ⟶𝑍)
11 fdm 6008 . . . . . 6 (𝐺:ℕ⟶𝑍 → dom 𝐺 = ℕ)
1210, 11syl 17 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → dom 𝐺 = ℕ)
138, 12syl5sseq 3632 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝑀...𝑁)) ⊆ ℕ)
14 isercoll.z . . . . 5 𝑍 = (ℤ𝑀)
15 isercoll.m . . . . 5 (𝜑𝑀 ∈ ℤ)
16 isercoll.i . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) < (𝐺‘(𝑘 + 1)))
1714, 15, 9, 16isercolllem1 14329 . . . 4 ((𝜑 ∧ (𝐺 “ (𝑀...𝑁)) ⊆ ℕ) → (𝐺 ↾ (𝐺 “ (𝑀...𝑁))) Isom < , < ((𝐺 “ (𝑀...𝑁)), (𝐺 “ (𝐺 “ (𝑀...𝑁)))))
1813, 17syldan 487 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 ↾ (𝐺 “ (𝑀...𝑁))) Isom < , < ((𝐺 “ (𝑀...𝑁)), (𝐺 “ (𝐺 “ (𝑀...𝑁)))))
1914, 15, 9, 16isercolllem2 14330 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (1...(#‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))) = (𝐺 “ (𝑀...𝑁)))
20 isoeq4 6524 . . . 4 ((1...(#‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))) = (𝐺 “ (𝑀...𝑁)) → ((𝐺 ↾ (𝐺 “ (𝑀...𝑁))) Isom < , < ((1...(#‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))), (𝐺 “ (𝐺 “ (𝑀...𝑁)))) ↔ (𝐺 ↾ (𝐺 “ (𝑀...𝑁))) Isom < , < ((𝐺 “ (𝑀...𝑁)), (𝐺 “ (𝐺 “ (𝑀...𝑁))))))
2119, 20syl 17 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → ((𝐺 ↾ (𝐺 “ (𝑀...𝑁))) Isom < , < ((1...(#‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))), (𝐺 “ (𝐺 “ (𝑀...𝑁)))) ↔ (𝐺 ↾ (𝐺 “ (𝑀...𝑁))) Isom < , < ((𝐺 “ (𝑀...𝑁)), (𝐺 “ (𝐺 “ (𝑀...𝑁))))))
2218, 21mpbird 247 . 2 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 ↾ (𝐺 “ (𝑀...𝑁))) Isom < , < ((1...(#‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))), (𝐺 “ (𝐺 “ (𝑀...𝑁)))))
238a1i 11 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝑀...𝑁)) ⊆ dom 𝐺)
24 sseqin2 3795 . . . . 5 ((𝐺 “ (𝑀...𝑁)) ⊆ dom 𝐺 ↔ (dom 𝐺 ∩ (𝐺 “ (𝑀...𝑁))) = (𝐺 “ (𝑀...𝑁)))
2523, 24sylib 208 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (dom 𝐺 ∩ (𝐺 “ (𝑀...𝑁))) = (𝐺 “ (𝑀...𝑁)))
26 1nn 10975 . . . . . . 7 1 ∈ ℕ
2726a1i 11 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 1 ∈ ℕ)
28 ffvelrn 6313 . . . . . . . . . 10 ((𝐺:ℕ⟶𝑍 ∧ 1 ∈ ℕ) → (𝐺‘1) ∈ 𝑍)
299, 26, 28sylancl 693 . . . . . . . . 9 (𝜑 → (𝐺‘1) ∈ 𝑍)
3029, 14syl6eleq 2708 . . . . . . . 8 (𝜑 → (𝐺‘1) ∈ (ℤ𝑀))
3130adantr 481 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺‘1) ∈ (ℤ𝑀))
32 simpr 477 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 𝑁 ∈ (ℤ‘(𝐺‘1)))
33 elfzuzb 12278 . . . . . . 7 ((𝐺‘1) ∈ (𝑀...𝑁) ↔ ((𝐺‘1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ‘(𝐺‘1))))
3431, 32, 33sylanbrc 697 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺‘1) ∈ (𝑀...𝑁))
35 ffn 6002 . . . . . . 7 (𝐺:ℕ⟶𝑍𝐺 Fn ℕ)
36 elpreima 6293 . . . . . . 7 (𝐺 Fn ℕ → (1 ∈ (𝐺 “ (𝑀...𝑁)) ↔ (1 ∈ ℕ ∧ (𝐺‘1) ∈ (𝑀...𝑁))))
3710, 35, 363syl 18 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (1 ∈ (𝐺 “ (𝑀...𝑁)) ↔ (1 ∈ ℕ ∧ (𝐺‘1) ∈ (𝑀...𝑁))))
3827, 34, 37mpbir2and 956 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 1 ∈ (𝐺 “ (𝑀...𝑁)))
39 ne0i 3897 . . . . 5 (1 ∈ (𝐺 “ (𝑀...𝑁)) → (𝐺 “ (𝑀...𝑁)) ≠ ∅)
4038, 39syl 17 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝑀...𝑁)) ≠ ∅)
4125, 40eqnetrd 2857 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (dom 𝐺 ∩ (𝐺 “ (𝑀...𝑁))) ≠ ∅)
42 imadisj 5443 . . . 4 ((𝐺 “ (𝐺 “ (𝑀...𝑁))) = ∅ ↔ (dom 𝐺 ∩ (𝐺 “ (𝑀...𝑁))) = ∅)
4342necon3bii 2842 . . 3 ((𝐺 “ (𝐺 “ (𝑀...𝑁))) ≠ ∅ ↔ (dom 𝐺 ∩ (𝐺 “ (𝑀...𝑁))) ≠ ∅)
4441, 43sylibr 224 . 2 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝐺 “ (𝑀...𝑁))) ≠ ∅)
45 ffun 6005 . . . 4 (𝐺:ℕ⟶𝑍 → Fun 𝐺)
46 funimacnv 5928 . . . 4 (Fun 𝐺 → (𝐺 “ (𝐺 “ (𝑀...𝑁))) = ((𝑀...𝑁) ∩ ran 𝐺))
4710, 45, 463syl 18 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝐺 “ (𝑀...𝑁))) = ((𝑀...𝑁) ∩ ran 𝐺))
48 inss1 3811 . . . 4 ((𝑀...𝑁) ∩ ran 𝐺) ⊆ (𝑀...𝑁)
4948a1i 11 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → ((𝑀...𝑁) ∩ ran 𝐺) ⊆ (𝑀...𝑁))
5047, 49eqsstrd 3618 . 2 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝐺 “ (𝐺 “ (𝑀...𝑁))) ⊆ (𝑀...𝑁))
51 simpl 473 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → 𝜑)
52 elfzuz 12280 . . . 4 (𝑛 ∈ (𝑀...𝑁) → 𝑛 ∈ (ℤ𝑀))
5352, 14syl6eleqr 2709 . . 3 (𝑛 ∈ (𝑀...𝑁) → 𝑛𝑍)
54 isercoll.f . . 3 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ ℂ)
5551, 53, 54syl2an 494 . 2 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑛 ∈ (𝑀...𝑁)) → (𝐹𝑛) ∈ ℂ)
5647difeq2d 3706 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → ((𝑀...𝑁) ∖ (𝐺 “ (𝐺 “ (𝑀...𝑁)))) = ((𝑀...𝑁) ∖ ((𝑀...𝑁) ∩ ran 𝐺)))
57 difin 3839 . . . . . 6 ((𝑀...𝑁) ∖ ((𝑀...𝑁) ∩ ran 𝐺)) = ((𝑀...𝑁) ∖ ran 𝐺)
5856, 57syl6eq 2671 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → ((𝑀...𝑁) ∖ (𝐺 “ (𝐺 “ (𝑀...𝑁)))) = ((𝑀...𝑁) ∖ ran 𝐺))
5953ssriv 3587 . . . . . 6 (𝑀...𝑁) ⊆ 𝑍
60 ssdif 3723 . . . . . 6 ((𝑀...𝑁) ⊆ 𝑍 → ((𝑀...𝑁) ∖ ran 𝐺) ⊆ (𝑍 ∖ ran 𝐺))
6159, 60mp1i 13 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → ((𝑀...𝑁) ∖ ran 𝐺) ⊆ (𝑍 ∖ ran 𝐺))
6258, 61eqsstrd 3618 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → ((𝑀...𝑁) ∖ (𝐺 “ (𝐺 “ (𝑀...𝑁)))) ⊆ (𝑍 ∖ ran 𝐺))
6362sselda 3583 . . 3 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑛 ∈ ((𝑀...𝑁) ∖ (𝐺 “ (𝐺 “ (𝑀...𝑁))))) → 𝑛 ∈ (𝑍 ∖ ran 𝐺))
64 isercoll.0 . . . 4 ((𝜑𝑛 ∈ (𝑍 ∖ ran 𝐺)) → (𝐹𝑛) = 0)
6564adantlr 750 . . 3 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑛 ∈ (𝑍 ∖ ran 𝐺)) → (𝐹𝑛) = 0)
6663, 65syldan 487 . 2 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑛 ∈ ((𝑀...𝑁) ∖ (𝐺 “ (𝐺 “ (𝑀...𝑁))))) → (𝐹𝑛) = 0)
67 elfznn 12312 . . . 4 (𝑘 ∈ (1...(#‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))) → 𝑘 ∈ ℕ)
68 isercoll.h . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
6951, 67, 68syl2an 494 . . 3 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (1...(#‘(𝐺 “ (𝐺 “ (𝑀...𝑁)))))) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))
7019eleq2d 2684 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (𝑘 ∈ (1...(#‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))) ↔ 𝑘 ∈ (𝐺 “ (𝑀...𝑁))))
7170biimpa 501 . . . . 5 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (1...(#‘(𝐺 “ (𝐺 “ (𝑀...𝑁)))))) → 𝑘 ∈ (𝐺 “ (𝑀...𝑁)))
72 fvres 6164 . . . . 5 (𝑘 ∈ (𝐺 “ (𝑀...𝑁)) → ((𝐺 ↾ (𝐺 “ (𝑀...𝑁)))‘𝑘) = (𝐺𝑘))
7371, 72syl 17 . . . 4 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (1...(#‘(𝐺 “ (𝐺 “ (𝑀...𝑁)))))) → ((𝐺 ↾ (𝐺 “ (𝑀...𝑁)))‘𝑘) = (𝐺𝑘))
7473fveq2d 6152 . . 3 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (1...(#‘(𝐺 “ (𝐺 “ (𝑀...𝑁)))))) → (𝐹‘((𝐺 ↾ (𝐺 “ (𝑀...𝑁)))‘𝑘)) = (𝐹‘(𝐺𝑘)))
7569, 74eqtr4d 2658 . 2 (((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) ∧ 𝑘 ∈ (1...(#‘(𝐺 “ (𝐺 “ (𝑀...𝑁)))))) → (𝐻𝑘) = (𝐹‘((𝐺 ↾ (𝐺 “ (𝑀...𝑁)))‘𝑘)))
762, 4, 6, 7, 22, 44, 50, 55, 66, 75seqcoll2 13187 1 ((𝜑𝑁 ∈ (ℤ‘(𝐺‘1))) → (seq𝑀( + , 𝐹)‘𝑁) = (seq1( + , 𝐻)‘(#‘(𝐺 “ (𝐺 “ (𝑀...𝑁))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  cdif 3552  cin 3554  wss 3555  c0 3891   class class class wbr 4613  ccnv 5073  dom cdm 5074  ran crn 5075  cres 5076  cima 5077  Fun wfun 5841   Fn wfn 5842  wf 5843  cfv 5847   Isom wiso 5848  (class class class)co 6604  cc 9878  0cc0 9880  1c1 9881   + caddc 9883   < clt 10018  cn 10964  cz 11321  cuz 11631  ...cfz 12268  seqcseq 12741  #chash 13057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-seq 12742  df-hash 13058
This theorem is referenced by:  isercoll  14332
  Copyright terms: Public domain W3C validator