MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islbs3 Structured version   Visualization version   GIF version

Theorem islbs3 19069
Description: An equivalent formulation of the basis predicate: a subset is a basis iff it is a minimal spanning set. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
islbs2.v 𝑉 = (Base‘𝑊)
islbs2.j 𝐽 = (LBasis‘𝑊)
islbs2.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
islbs3 (𝑊 ∈ LVec → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))))
Distinct variable groups:   𝐵,𝑠   𝑁,𝑠   𝑉,𝑠   𝑊,𝑠   𝐽,𝑠

Proof of Theorem islbs3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 islbs2.v . . . . 5 𝑉 = (Base‘𝑊)
2 islbs2.j . . . . 5 𝐽 = (LBasis‘𝑊)
31, 2lbsss 18991 . . . 4 (𝐵𝐽𝐵𝑉)
43adantl 482 . . 3 ((𝑊 ∈ LVec ∧ 𝐵𝐽) → 𝐵𝑉)
5 islbs2.n . . . . 5 𝑁 = (LSpan‘𝑊)
61, 2, 5lbssp 18993 . . . 4 (𝐵𝐽 → (𝑁𝐵) = 𝑉)
76adantl 482 . . 3 ((𝑊 ∈ LVec ∧ 𝐵𝐽) → (𝑁𝐵) = 𝑉)
8 lveclmod 19020 . . . . . . . 8 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
983ad2ant1 1080 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝐵𝐽𝑠𝐵) → 𝑊 ∈ LMod)
10 pssss 3685 . . . . . . . . 9 (𝑠𝐵𝑠𝐵)
1110, 3sylan9ssr 3602 . . . . . . . 8 ((𝐵𝐽𝑠𝐵) → 𝑠𝑉)
12113adant1 1077 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝐵𝐽𝑠𝐵) → 𝑠𝑉)
131, 5lspssv 18897 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑠𝑉) → (𝑁𝑠) ⊆ 𝑉)
149, 12, 13syl2anc 692 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝐵𝐽𝑠𝐵) → (𝑁𝑠) ⊆ 𝑉)
15 eqid 2626 . . . . . . . . . 10 (Scalar‘𝑊) = (Scalar‘𝑊)
1615lvecdrng 19019 . . . . . . . . 9 (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ DivRing)
17 eqid 2626 . . . . . . . . . 10 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
18 eqid 2626 . . . . . . . . . 10 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
1917, 18drngunz 18678 . . . . . . . . 9 ((Scalar‘𝑊) ∈ DivRing → (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊)))
2016, 19syl 17 . . . . . . . 8 (𝑊 ∈ LVec → (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊)))
218, 20jca 554 . . . . . . 7 (𝑊 ∈ LVec → (𝑊 ∈ LMod ∧ (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊))))
222, 5, 15, 18, 17, 1lbspss 18996 . . . . . . 7 (((𝑊 ∈ LMod ∧ (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊))) ∧ 𝐵𝐽𝑠𝐵) → (𝑁𝑠) ≠ 𝑉)
2321, 22syl3an1 1356 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝐵𝐽𝑠𝐵) → (𝑁𝑠) ≠ 𝑉)
24 df-pss 3576 . . . . . 6 ((𝑁𝑠) ⊊ 𝑉 ↔ ((𝑁𝑠) ⊆ 𝑉 ∧ (𝑁𝑠) ≠ 𝑉))
2514, 23, 24sylanbrc 697 . . . . 5 ((𝑊 ∈ LVec ∧ 𝐵𝐽𝑠𝐵) → (𝑁𝑠) ⊊ 𝑉)
26253expia 1264 . . . 4 ((𝑊 ∈ LVec ∧ 𝐵𝐽) → (𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))
2726alrimiv 1857 . . 3 ((𝑊 ∈ LVec ∧ 𝐵𝐽) → ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))
284, 7, 273jca 1240 . 2 ((𝑊 ∈ LVec ∧ 𝐵𝐽) → (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉)))
29 simpr1 1065 . . 3 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) → 𝐵𝑉)
30 simpr2 1066 . . 3 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) → (𝑁𝐵) = 𝑉)
31 simplr1 1101 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → 𝐵𝑉)
3231ssdifssd 3731 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → (𝐵 ∖ {𝑥}) ⊆ 𝑉)
33 fvex 6160 . . . . . . . . 9 (Base‘𝑊) ∈ V
341, 33eqeltri 2700 . . . . . . . 8 𝑉 ∈ V
35 ssexg 4769 . . . . . . . 8 (((𝐵 ∖ {𝑥}) ⊆ 𝑉𝑉 ∈ V) → (𝐵 ∖ {𝑥}) ∈ V)
3632, 34, 35sylancl 693 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → (𝐵 ∖ {𝑥}) ∈ V)
37 simplr3 1103 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))
38 difssd 3721 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → (𝐵 ∖ {𝑥}) ⊆ 𝐵)
39 simpr 477 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → 𝑥𝐵)
40 neldifsn 4295 . . . . . . . . . 10 ¬ 𝑥 ∈ (𝐵 ∖ {𝑥})
41 nelne1 2892 . . . . . . . . . 10 ((𝑥𝐵 ∧ ¬ 𝑥 ∈ (𝐵 ∖ {𝑥})) → 𝐵 ≠ (𝐵 ∖ {𝑥}))
4239, 40, 41sylancl 693 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → 𝐵 ≠ (𝐵 ∖ {𝑥}))
4342necomd 2851 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → (𝐵 ∖ {𝑥}) ≠ 𝐵)
44 df-pss 3576 . . . . . . . 8 ((𝐵 ∖ {𝑥}) ⊊ 𝐵 ↔ ((𝐵 ∖ {𝑥}) ⊆ 𝐵 ∧ (𝐵 ∖ {𝑥}) ≠ 𝐵))
4538, 43, 44sylanbrc 697 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → (𝐵 ∖ {𝑥}) ⊊ 𝐵)
46 psseq1 3677 . . . . . . . . 9 (𝑠 = (𝐵 ∖ {𝑥}) → (𝑠𝐵 ↔ (𝐵 ∖ {𝑥}) ⊊ 𝐵))
47 fveq2 6150 . . . . . . . . . 10 (𝑠 = (𝐵 ∖ {𝑥}) → (𝑁𝑠) = (𝑁‘(𝐵 ∖ {𝑥})))
4847psseq1d 3682 . . . . . . . . 9 (𝑠 = (𝐵 ∖ {𝑥}) → ((𝑁𝑠) ⊊ 𝑉 ↔ (𝑁‘(𝐵 ∖ {𝑥})) ⊊ 𝑉))
4946, 48imbi12d 334 . . . . . . . 8 (𝑠 = (𝐵 ∖ {𝑥}) → ((𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉) ↔ ((𝐵 ∖ {𝑥}) ⊊ 𝐵 → (𝑁‘(𝐵 ∖ {𝑥})) ⊊ 𝑉)))
5049spcgv 3284 . . . . . . 7 ((𝐵 ∖ {𝑥}) ∈ V → (∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉) → ((𝐵 ∖ {𝑥}) ⊊ 𝐵 → (𝑁‘(𝐵 ∖ {𝑥})) ⊊ 𝑉)))
5136, 37, 45, 50syl3c 66 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → (𝑁‘(𝐵 ∖ {𝑥})) ⊊ 𝑉)
52 dfpss3 3676 . . . . . . 7 ((𝑁‘(𝐵 ∖ {𝑥})) ⊊ 𝑉 ↔ ((𝑁‘(𝐵 ∖ {𝑥})) ⊆ 𝑉 ∧ ¬ 𝑉 ⊆ (𝑁‘(𝐵 ∖ {𝑥}))))
5352simprbi 480 . . . . . 6 ((𝑁‘(𝐵 ∖ {𝑥})) ⊊ 𝑉 → ¬ 𝑉 ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
5451, 53syl 17 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → ¬ 𝑉 ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
55 simplr2 1102 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → (𝑁𝐵) = 𝑉)
568ad2antrr 761 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → 𝑊 ∈ LMod)
5732adantrr 752 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → (𝐵 ∖ {𝑥}) ⊆ 𝑉)
58 eqid 2626 . . . . . . . . . 10 (LSubSp‘𝑊) = (LSubSp‘𝑊)
591, 58, 5lspcl 18890 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (𝐵 ∖ {𝑥}) ⊆ 𝑉) → (𝑁‘(𝐵 ∖ {𝑥})) ∈ (LSubSp‘𝑊))
6056, 57, 59syl2anc 692 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → (𝑁‘(𝐵 ∖ {𝑥})) ∈ (LSubSp‘𝑊))
61 ssun1 3759 . . . . . . . . . 10 𝐵 ⊆ (𝐵 ∪ {𝑥})
62 undif1 4020 . . . . . . . . . 10 ((𝐵 ∖ {𝑥}) ∪ {𝑥}) = (𝐵 ∪ {𝑥})
6361, 62sseqtr4i 3622 . . . . . . . . 9 𝐵 ⊆ ((𝐵 ∖ {𝑥}) ∪ {𝑥})
641, 5lspssid 18899 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ (𝐵 ∖ {𝑥}) ⊆ 𝑉) → (𝐵 ∖ {𝑥}) ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
6556, 57, 64syl2anc 692 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → (𝐵 ∖ {𝑥}) ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
66 simprr 795 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
6766snssd 4314 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → {𝑥} ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
6865, 67unssd 3772 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → ((𝐵 ∖ {𝑥}) ∪ {𝑥}) ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
6963, 68syl5ss 3599 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → 𝐵 ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
7058, 5lspssp 18902 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑁‘(𝐵 ∖ {𝑥})) ∈ (LSubSp‘𝑊) ∧ 𝐵 ⊆ (𝑁‘(𝐵 ∖ {𝑥}))) → (𝑁𝐵) ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
7156, 60, 69, 70syl3anc 1323 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → (𝑁𝐵) ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
7255, 71eqsstr3d 3624 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ (𝑥𝐵𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → 𝑉 ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
7372expr 642 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → (𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})) → 𝑉 ⊆ (𝑁‘(𝐵 ∖ {𝑥}))))
7454, 73mtod 189 . . . 4 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) ∧ 𝑥𝐵) → ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
7574ralrimiva 2965 . . 3 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) → ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
761, 2, 5islbs2 19068 . . . 4 (𝑊 ∈ LVec → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
7776adantr 481 . . 3 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
7829, 30, 75, 77mpbir3and 1243 . 2 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))) → 𝐵𝐽)
7928, 78impbida 876 1 (𝑊 ∈ LVec → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑠(𝑠𝐵 → (𝑁𝑠) ⊊ 𝑉))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036  wal 1478   = wceq 1480  wcel 1992  wne 2796  wral 2912  Vcvv 3191  cdif 3557  cun 3558  wss 3560  wpss 3561  {csn 4153  cfv 5850  Basecbs 15776  Scalarcsca 15860  0gc0g 16016  1rcur 18417  DivRingcdr 18663  LModclmod 18779  LSubSpclss 18846  LSpanclspn 18885  LBasisclbs 18988  LVecclvec 19016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-tpos 7298  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-2 11024  df-3 11025  df-ndx 15779  df-slot 15780  df-base 15781  df-sets 15782  df-ress 15783  df-plusg 15870  df-mulr 15871  df-0g 16018  df-mgm 17158  df-sgrp 17200  df-mnd 17211  df-grp 17341  df-minusg 17342  df-sbg 17343  df-mgp 18406  df-ur 18418  df-ring 18465  df-oppr 18539  df-dvdsr 18557  df-unit 18558  df-invr 18588  df-drng 18665  df-lmod 18781  df-lss 18847  df-lsp 18886  df-lbs 18989  df-lvec 19017
This theorem is referenced by:  obslbs  19988
  Copyright terms: Public domain W3C validator