| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > konigsberg | Structured version Visualization version GIF version | ||
| Description: The Königsberg Bridge problem. If 𝐺 is the Königsberg graph, i.e. a graph on four vertices 0, 1, 2, 3, with edges {0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 2}, {2, 3}, {2, 3}, then vertices 0, 1, 3 each have degree three, and 2 has degree five, so there are four vertices of odd degree and thus by eulerpath 30143 the graph cannot have an Eulerian path. It is sufficient to show that there are 3 vertices of odd degree, since a graph having an Eulerian path can only have 0 or 2 vertices of odd degree. This is Metamath 100 proof #54. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 9-Mar-2021.) |
| Ref | Expression |
|---|---|
| konigsberg.v | ⊢ 𝑉 = (0...3) |
| konigsberg.e | ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 |
| konigsberg.g | ⊢ 𝐺 = 〈𝑉, 𝐸〉 |
| Ref | Expression |
|---|---|
| konigsberg | ⊢ (EulerPaths‘𝐺) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | konigsberg.v | . . . 4 ⊢ 𝑉 = (0...3) | |
| 2 | konigsberg.e | . . . 4 ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 | |
| 3 | konigsberg.g | . . . 4 ⊢ 𝐺 = 〈𝑉, 𝐸〉 | |
| 4 | 1, 2, 3 | konigsberglem5 30158 | . . 3 ⊢ 2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) |
| 5 | elpri 4609 | . . . 4 ⊢ ((♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2} → ((♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 0 ∨ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 2)) | |
| 6 | 2pos 12265 | . . . . . . 7 ⊢ 0 < 2 | |
| 7 | 0re 11152 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
| 8 | 2re 12236 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
| 9 | 7, 8 | ltnsymi 11269 | . . . . . . 7 ⊢ (0 < 2 → ¬ 2 < 0) |
| 10 | 6, 9 | ax-mp 5 | . . . . . 6 ⊢ ¬ 2 < 0 |
| 11 | breq2 5106 | . . . . . 6 ⊢ ((♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 0 → (2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ 2 < 0)) | |
| 12 | 10, 11 | mtbiri 327 | . . . . 5 ⊢ ((♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 0 → ¬ 2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) |
| 13 | 8 | ltnri 11259 | . . . . . 6 ⊢ ¬ 2 < 2 |
| 14 | breq2 5106 | . . . . . 6 ⊢ ((♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 2 → (2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ 2 < 2)) | |
| 15 | 13, 14 | mtbiri 327 | . . . . 5 ⊢ ((♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 2 → ¬ 2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) |
| 16 | 12, 15 | jaoi 857 | . . . 4 ⊢ (((♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 0 ∨ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) = 2) → ¬ 2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) |
| 17 | 5, 16 | syl 17 | . . 3 ⊢ ((♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2} → ¬ 2 < (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})) |
| 18 | 4, 17 | mt2 200 | . 2 ⊢ ¬ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2} |
| 19 | 1, 2, 3 | konigsbergumgr 30153 | . . . . 5 ⊢ 𝐺 ∈ UMGraph |
| 20 | umgrupgr 29006 | . . . . 5 ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph) | |
| 21 | 19, 20 | ax-mp 5 | . . . 4 ⊢ 𝐺 ∈ UPGraph |
| 22 | 3 | fveq2i 6843 | . . . . . 6 ⊢ (Vtx‘𝐺) = (Vtx‘〈𝑉, 𝐸〉) |
| 23 | 1 | ovexi 7403 | . . . . . . 7 ⊢ 𝑉 ∈ V |
| 24 | s7cli 14827 | . . . . . . . 8 ⊢ 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 ∈ Word V | |
| 25 | 2, 24 | eqeltri 2824 | . . . . . . 7 ⊢ 𝐸 ∈ Word V |
| 26 | opvtxfv 28907 | . . . . . . 7 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ Word V) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) | |
| 27 | 23, 25, 26 | mp2an 692 | . . . . . 6 ⊢ (Vtx‘〈𝑉, 𝐸〉) = 𝑉 |
| 28 | 22, 27 | eqtr2i 2753 | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) |
| 29 | 28 | eulerpath 30143 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ (EulerPaths‘𝐺) ≠ ∅) → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2}) |
| 30 | 21, 29 | mpan 690 | . . 3 ⊢ ((EulerPaths‘𝐺) ≠ ∅ → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2}) |
| 31 | 30 | necon1bi 2953 | . 2 ⊢ (¬ (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2} → (EulerPaths‘𝐺) = ∅) |
| 32 | 18, 31 | ax-mp 5 | 1 ⊢ (EulerPaths‘𝐺) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {crab 3402 Vcvv 3444 ∅c0 4292 {cpr 4587 〈cop 4591 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 0cc0 11044 1c1 11045 < clt 11184 2c2 12217 3c3 12218 ...cfz 13444 ♯chash 14271 Word cword 14454 〈“cs7 14788 ∥ cdvds 16198 Vtxcvtx 28899 UPGraphcupgr 28983 UMGraphcumgr 28984 VtxDegcvtxdg 29369 EulerPathsceupth 30099 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-er 8648 df-map 8778 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-dju 9830 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-n0 12419 df-xnn0 12492 df-z 12506 df-uz 12770 df-rp 12928 df-xadd 13049 df-fz 13445 df-fzo 13592 df-seq 13943 df-exp 14003 df-hash 14272 df-word 14455 df-concat 14512 df-s1 14537 df-s2 14790 df-s3 14791 df-s4 14792 df-s5 14793 df-s6 14794 df-s7 14795 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-dvds 16199 df-vtx 28901 df-iedg 28902 df-edg 28951 df-uhgr 28961 df-ushgr 28962 df-upgr 28985 df-umgr 28986 df-uspgr 29053 df-vtxdg 29370 df-wlks 29503 df-trls 29594 df-eupth 30100 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |