MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  konigsberglem5 Structured version   Visualization version   GIF version

Theorem konigsberglem5 27234
Description: Lemma 5 for konigsberg 27235: The set of vertices of odd degree is greater than 2. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 28-Feb-2021.)
Hypotheses
Ref Expression
konigsberg.v 𝑉 = (0...3)
konigsberg.e 𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
konigsberg.g 𝐺 = ⟨𝑉, 𝐸
Assertion
Ref Expression
konigsberglem5 2 < (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})
Distinct variable groups:   𝑥,𝑉   𝑥,𝐺
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem konigsberglem5
StepHypRef Expression
1 konigsberg.v . . 3 𝑉 = (0...3)
2 konigsberg.e . . 3 𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
3 konigsberg.g . . 3 𝐺 = ⟨𝑉, 𝐸
41, 2, 3konigsberglem4 27233 . 2 {0, 1, 3} ⊆ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}
51ovexi 6719 . . . 4 𝑉 ∈ V
65rabex 4845 . . 3 {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∈ V
7 hashss 13235 . . 3 (({𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∈ V ∧ {0, 1, 3} ⊆ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) → (#‘{0, 1, 3}) ≤ (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}))
86, 7mpan 706 . 2 ({0, 1, 3} ⊆ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} → (#‘{0, 1, 3}) ≤ (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}))
9 0ne1 11126 . . . . . 6 0 ≠ 1
10 1re 10077 . . . . . . 7 1 ∈ ℝ
11 1lt3 11234 . . . . . . 7 1 < 3
1210, 11ltneii 10188 . . . . . 6 1 ≠ 3
13 3ne0 11153 . . . . . 6 3 ≠ 0
149, 12, 133pm3.2i 1259 . . . . 5 (0 ≠ 1 ∧ 1 ≠ 3 ∧ 3 ≠ 0)
15 c0ex 10072 . . . . . 6 0 ∈ V
16 1ex 10073 . . . . . 6 1 ∈ V
17 3ex 11134 . . . . . 6 3 ∈ V
18 hashtpg 13305 . . . . . 6 ((0 ∈ V ∧ 1 ∈ V ∧ 3 ∈ V) → ((0 ≠ 1 ∧ 1 ≠ 3 ∧ 3 ≠ 0) ↔ (#‘{0, 1, 3}) = 3))
1915, 16, 17, 18mp3an 1464 . . . . 5 ((0 ≠ 1 ∧ 1 ≠ 3 ∧ 3 ≠ 0) ↔ (#‘{0, 1, 3}) = 3)
2014, 19mpbi 220 . . . 4 (#‘{0, 1, 3}) = 3
2120breq1i 4692 . . 3 ((#‘{0, 1, 3}) ≤ (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ 3 ≤ (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}))
22 df-3 11118 . . . . 5 3 = (2 + 1)
2322breq1i 4692 . . . 4 (3 ≤ (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ (2 + 1) ≤ (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}))
24 2z 11447 . . . . 5 2 ∈ ℤ
25 fzfi 12811 . . . . . . . 8 (0...3) ∈ Fin
261, 25eqeltri 2726 . . . . . . 7 𝑉 ∈ Fin
27 rabfi 8226 . . . . . . 7 (𝑉 ∈ Fin → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∈ Fin)
28 hashcl 13185 . . . . . . 7 ({𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∈ Fin → (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ ℕ0)
2926, 27, 28mp2b 10 . . . . . 6 (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ ℕ0
3029nn0zi 11440 . . . . 5 (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ ℤ
31 zltp1le 11465 . . . . 5 ((2 ∈ ℤ ∧ (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ ℤ) → (2 < (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ (2 + 1) ≤ (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})))
3224, 30, 31mp2an 708 . . . 4 (2 < (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ (2 + 1) ≤ (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}))
3323, 32sylbb2 228 . . 3 (3 ≤ (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) → 2 < (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}))
3421, 33sylbi 207 . 2 ((#‘{0, 1, 3}) ≤ (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) → 2 < (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}))
354, 8, 34mp2b 10 1 2 < (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  w3a 1054   = wceq 1523  wcel 2030  wne 2823  {crab 2945  Vcvv 3231  wss 3607  {cpr 4212  {ctp 4214  cop 4216   class class class wbr 4685  cfv 5926  (class class class)co 6690  Fincfn 7997  0cc0 9974  1c1 9975   + caddc 9977   < clt 10112  cle 10113  2c2 11108  3c3 11109  0cn0 11330  cz 11415  ...cfz 12364  #chash 13157  ⟨“cs7 13637  cdvds 15027  VtxDegcvtxdg 26417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-xadd 11985  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-concat 13333  df-s1 13334  df-s2 13639  df-s3 13640  df-s4 13641  df-s5 13642  df-s6 13643  df-s7 13644  df-dvds 15028  df-vtx 25921  df-iedg 25922  df-vtxdg 26418
This theorem is referenced by:  konigsberg  27235
  Copyright terms: Public domain W3C validator