Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  konigsberglem5 Structured version   Visualization version   GIF version

Theorem konigsberglem5 41407
Description: Lemma 5 for konigsberg-av 41408: The set of vertices of odd degree is greater than 2. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 28-Feb-2021.)
Hypotheses
Ref Expression
konigsberg-av.v 𝑉 = (0...3)
konigsberg-av.e 𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
konigsberg-av.g 𝐺 = ⟨𝑉, 𝐸
Assertion
Ref Expression
konigsberglem5 2 < (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})
Distinct variable groups:   𝑥,𝑉   𝑥,𝐺
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem konigsberglem5
StepHypRef Expression
1 konigsberg-av.v . . 3 𝑉 = (0...3)
2 konigsberg-av.e . . 3 𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
3 konigsberg-av.g . . 3 𝐺 = ⟨𝑉, 𝐸
41, 2, 3konigsberglem4 41406 . 2 {0, 1, 3} ⊆ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}
51ovexi 6555 . . . 4 𝑉 ∈ V
65rabex 4734 . . 3 {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∈ V
7 hashss 13012 . . 3 (({𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∈ V ∧ {0, 1, 3} ⊆ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) → (#‘{0, 1, 3}) ≤ (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}))
86, 7mpan 701 . 2 ({0, 1, 3} ⊆ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} → (#‘{0, 1, 3}) ≤ (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}))
9 0ne1 10937 . . . . . 6 0 ≠ 1
10 1re 9895 . . . . . . 7 1 ∈ ℝ
11 1lt3 11045 . . . . . . 7 1 < 3
1210, 11ltneii 10001 . . . . . 6 1 ≠ 3
13 3ne0 10964 . . . . . 6 3 ≠ 0
149, 12, 133pm3.2i 1231 . . . . 5 (0 ≠ 1 ∧ 1 ≠ 3 ∧ 3 ≠ 0)
15 c0ex 9890 . . . . . 6 0 ∈ V
16 1ex 9891 . . . . . 6 1 ∈ V
17 3ex 10945 . . . . . 6 3 ∈ V
18 hashtpg 13073 . . . . . 6 ((0 ∈ V ∧ 1 ∈ V ∧ 3 ∈ V) → ((0 ≠ 1 ∧ 1 ≠ 3 ∧ 3 ≠ 0) ↔ (#‘{0, 1, 3}) = 3))
1915, 16, 17, 18mp3an 1415 . . . . 5 ((0 ≠ 1 ∧ 1 ≠ 3 ∧ 3 ≠ 0) ↔ (#‘{0, 1, 3}) = 3)
2014, 19mpbi 218 . . . 4 (#‘{0, 1, 3}) = 3
2120breq1i 4584 . . 3 ((#‘{0, 1, 3}) ≤ (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ 3 ≤ (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}))
22 df-3 10929 . . . . 5 3 = (2 + 1)
2322breq1i 4584 . . . 4 (3 ≤ (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ (2 + 1) ≤ (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}))
24 2z 11244 . . . . 5 2 ∈ ℤ
25 fzfi 12590 . . . . . . . 8 (0...3) ∈ Fin
261, 25eqeltri 2683 . . . . . . 7 𝑉 ∈ Fin
27 rabfi 8047 . . . . . . 7 (𝑉 ∈ Fin → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∈ Fin)
28 hashcl 12963 . . . . . . 7 ({𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)} ∈ Fin → (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ ℕ0)
2926, 27, 28mp2b 10 . . . . . 6 (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ ℕ0
3029nn0zi 11237 . . . . 5 (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ ℤ
31 zltp1le 11262 . . . . 5 ((2 ∈ ℤ ∧ (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ ℤ) → (2 < (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ (2 + 1) ≤ (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})))
3224, 30, 31mp2an 703 . . . 4 (2 < (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ↔ (2 + 1) ≤ (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}))
3323, 32sylbb2 226 . . 3 (3 ≤ (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) → 2 < (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}))
3421, 33sylbi 205 . 2 ((#‘{0, 1, 3}) ≤ (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) → 2 < (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}))
354, 8, 34mp2b 10 1 2 < (#‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 194  w3a 1030   = wceq 1474  wcel 1976  wne 2779  {crab 2899  Vcvv 3172  wss 3539  {cpr 4126  {ctp 4128  cop 4130   class class class wbr 4577  cfv 5789  (class class class)co 6526  Fincfn 7818  0cc0 9792  1c1 9793   + caddc 9795   < clt 9930  cle 9931  2c2 10919  3c3 10920  0cn0 11141  cz 11212  ...cfz 12154  #chash 12936  ⟨“cs7 13390  cdvds 14769  VtxDegcvtxdg 40662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-card 8625  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10536  df-nn 10870  df-2 10928  df-3 10929  df-n0 11142  df-z 11213  df-uz 11522  df-xadd 11781  df-fz 12155  df-fzo 12292  df-hash 12937  df-word 13102  df-concat 13104  df-s1 13105  df-s2 13392  df-s3 13393  df-s4 13394  df-s5 13395  df-s6 13396  df-s7 13397  df-dvds 14770  df-xnn0 40179  df-vtx 40212  df-iedg 40213  df-vtxdg 40663
This theorem is referenced by:  konigsberg-av  41408
  Copyright terms: Public domain W3C validator