Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kur14lem8 Structured version   Visualization version   GIF version

Theorem kur14lem8 31523
Description: Lemma for kur14 31526. Show that the set 𝑇 contains at most 14 elements. (It could be less if some of the operators take the same value for a given set, but Kuratowski showed that this upper bound of 14 is tight in the sense that there exist topological spaces and subsets of these spaces for which all 14 generated sets are distinct, and indeed the real numbers form such a topological space.) (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
kur14lem.j 𝐽 ∈ Top
kur14lem.x 𝑋 = 𝐽
kur14lem.k 𝐾 = (cls‘𝐽)
kur14lem.i 𝐼 = (int‘𝐽)
kur14lem.a 𝐴𝑋
kur14lem.b 𝐵 = (𝑋 ∖ (𝐾𝐴))
kur14lem.c 𝐶 = (𝐾‘(𝑋𝐴))
kur14lem.d 𝐷 = (𝐼‘(𝐾𝐴))
kur14lem.t 𝑇 = ((({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))}) ∪ ({(𝐼𝐶), (𝐾𝐷), (𝐼‘(𝐾𝐵))} ∪ {(𝐾‘(𝐼𝐶)), (𝐼‘(𝐾‘(𝐼𝐴)))}))
Assertion
Ref Expression
kur14lem8 (𝑇 ∈ Fin ∧ (♯‘𝑇) ≤ 14)

Proof of Theorem kur14lem8
StepHypRef Expression
1 kur14lem.t . 2 𝑇 = ((({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))}) ∪ ({(𝐼𝐶), (𝐾𝐷), (𝐼‘(𝐾𝐵))} ∪ {(𝐾‘(𝐼𝐶)), (𝐼‘(𝐾‘(𝐼𝐴)))}))
2 eqid 2760 . . 3 (({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))}) = (({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))})
3 eqid 2760 . . . 4 ({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) = ({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)})
4 hashtplei 13478 . . . 4 ({𝐴, (𝑋𝐴), (𝐾𝐴)} ∈ Fin ∧ (♯‘{𝐴, (𝑋𝐴), (𝐾𝐴)}) ≤ 3)
5 hashtplei 13478 . . . 4 ({𝐵, 𝐶, (𝐼𝐴)} ∈ Fin ∧ (♯‘{𝐵, 𝐶, (𝐼𝐴)}) ≤ 3)
6 3nn0 11522 . . . 4 3 ∈ ℕ0
7 3p3e6 11373 . . . 4 (3 + 3) = 6
83, 4, 5, 6, 6, 7hashunlei 13424 . . 3 (({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∈ Fin ∧ (♯‘({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)})) ≤ 6)
9 hashtplei 13478 . . 3 ({(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))} ∈ Fin ∧ (♯‘{(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))}) ≤ 3)
10 6nn0 11525 . . 3 6 ∈ ℕ0
11 6p3e9 11382 . . 3 (6 + 3) = 9
122, 8, 9, 10, 6, 11hashunlei 13424 . 2 ((({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))}) ∈ Fin ∧ (♯‘(({𝐴, (𝑋𝐴), (𝐾𝐴)} ∪ {𝐵, 𝐶, (𝐼𝐴)}) ∪ {(𝐾𝐵), 𝐷, (𝐾‘(𝐼𝐴))})) ≤ 9)
13 eqid 2760 . . 3 ({(𝐼𝐶), (𝐾𝐷), (𝐼‘(𝐾𝐵))} ∪ {(𝐾‘(𝐼𝐶)), (𝐼‘(𝐾‘(𝐼𝐴)))}) = ({(𝐼𝐶), (𝐾𝐷), (𝐼‘(𝐾𝐵))} ∪ {(𝐾‘(𝐼𝐶)), (𝐼‘(𝐾‘(𝐼𝐴)))})
14 hashtplei 13478 . . 3 ({(𝐼𝐶), (𝐾𝐷), (𝐼‘(𝐾𝐵))} ∈ Fin ∧ (♯‘{(𝐼𝐶), (𝐾𝐷), (𝐼‘(𝐾𝐵))}) ≤ 3)
15 hashprlei 13462 . . 3 ({(𝐾‘(𝐼𝐶)), (𝐼‘(𝐾‘(𝐼𝐴)))} ∈ Fin ∧ (♯‘{(𝐾‘(𝐼𝐶)), (𝐼‘(𝐾‘(𝐼𝐴)))}) ≤ 2)
16 2nn0 11521 . . 3 2 ∈ ℕ0
17 3p2e5 11372 . . 3 (3 + 2) = 5
1813, 14, 15, 6, 16, 17hashunlei 13424 . 2 (({(𝐼𝐶), (𝐾𝐷), (𝐼‘(𝐾𝐵))} ∪ {(𝐾‘(𝐼𝐶)), (𝐼‘(𝐾‘(𝐼𝐴)))}) ∈ Fin ∧ (♯‘({(𝐼𝐶), (𝐾𝐷), (𝐼‘(𝐾𝐵))} ∪ {(𝐾‘(𝐼𝐶)), (𝐼‘(𝐾‘(𝐼𝐴)))})) ≤ 5)
19 9nn0 11528 . 2 9 ∈ ℕ0
20 5nn0 11524 . 2 5 ∈ ℕ0
21 9p5e14 11835 . 2 (9 + 5) = 14
221, 12, 18, 19, 20, 21hashunlei 13424 1 (𝑇 ∈ Fin ∧ (♯‘𝑇) ≤ 14)
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1632  wcel 2139  cdif 3712  cun 3713  wss 3715  {cpr 4323  {ctp 4325   cuni 4588   class class class wbr 4804  cfv 6049  Fincfn 8123  1c1 10149  cle 10287  2c2 11282  3c3 11283  4c4 11284  5c5 11285  6c6 11286  9c9 11289  cdc 11705  chash 13331  Topctop 20920  intcnt 21043  clsccl 21044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-card 8975  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-xnn0 11576  df-z 11590  df-dec 11706  df-uz 11900  df-fz 12540  df-hash 13332
This theorem is referenced by:  kur14lem9  31524
  Copyright terms: Public domain W3C validator