MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodsubdir Structured version   Visualization version   GIF version

Theorem lmodsubdir 18692
Description: Scalar multiplication distributive law for subtraction. (hvsubdistr2 27084 analog.) (Contributed by NM, 2-Jul-2014.)
Hypotheses
Ref Expression
lmodsubdir.v 𝑉 = (Base‘𝑊)
lmodsubdir.t · = ( ·𝑠𝑊)
lmodsubdir.f 𝐹 = (Scalar‘𝑊)
lmodsubdir.k 𝐾 = (Base‘𝐹)
lmodsubdir.m = (-g𝑊)
lmodsubdir.s 𝑆 = (-g𝐹)
lmodsubdir.w (𝜑𝑊 ∈ LMod)
lmodsubdir.a (𝜑𝐴𝐾)
lmodsubdir.b (𝜑𝐵𝐾)
lmodsubdir.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lmodsubdir (𝜑 → ((𝐴𝑆𝐵) · 𝑋) = ((𝐴 · 𝑋) (𝐵 · 𝑋)))

Proof of Theorem lmodsubdir
StepHypRef Expression
1 lmodsubdir.w . . . 4 (𝜑𝑊 ∈ LMod)
2 lmodsubdir.a . . . 4 (𝜑𝐴𝐾)
3 lmodsubdir.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
43lmodring 18642 . . . . . . 7 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
51, 4syl 17 . . . . . 6 (𝜑𝐹 ∈ Ring)
6 ringgrp 18323 . . . . . 6 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
75, 6syl 17 . . . . 5 (𝜑𝐹 ∈ Grp)
8 lmodsubdir.b . . . . 5 (𝜑𝐵𝐾)
9 lmodsubdir.k . . . . . 6 𝐾 = (Base‘𝐹)
10 eqid 2609 . . . . . 6 (invg𝐹) = (invg𝐹)
119, 10grpinvcl 17238 . . . . 5 ((𝐹 ∈ Grp ∧ 𝐵𝐾) → ((invg𝐹)‘𝐵) ∈ 𝐾)
127, 8, 11syl2anc 690 . . . 4 (𝜑 → ((invg𝐹)‘𝐵) ∈ 𝐾)
13 lmodsubdir.x . . . 4 (𝜑𝑋𝑉)
14 lmodsubdir.v . . . . 5 𝑉 = (Base‘𝑊)
15 eqid 2609 . . . . 5 (+g𝑊) = (+g𝑊)
16 lmodsubdir.t . . . . 5 · = ( ·𝑠𝑊)
17 eqid 2609 . . . . 5 (+g𝐹) = (+g𝐹)
1814, 15, 3, 16, 9, 17lmodvsdir 18658 . . . 4 ((𝑊 ∈ LMod ∧ (𝐴𝐾 ∧ ((invg𝐹)‘𝐵) ∈ 𝐾𝑋𝑉)) → ((𝐴(+g𝐹)((invg𝐹)‘𝐵)) · 𝑋) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘𝐵) · 𝑋)))
191, 2, 12, 13, 18syl13anc 1319 . . 3 (𝜑 → ((𝐴(+g𝐹)((invg𝐹)‘𝐵)) · 𝑋) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘𝐵) · 𝑋)))
20 eqid 2609 . . . . . . 7 (.r𝐹) = (.r𝐹)
21 eqid 2609 . . . . . . 7 (1r𝐹) = (1r𝐹)
229, 20, 21, 10, 5, 8ringnegl 18365 . . . . . 6 (𝜑 → (((invg𝐹)‘(1r𝐹))(.r𝐹)𝐵) = ((invg𝐹)‘𝐵))
2322oveq1d 6541 . . . . 5 (𝜑 → ((((invg𝐹)‘(1r𝐹))(.r𝐹)𝐵) · 𝑋) = (((invg𝐹)‘𝐵) · 𝑋))
249, 21ringidcl 18339 . . . . . . . 8 (𝐹 ∈ Ring → (1r𝐹) ∈ 𝐾)
255, 24syl 17 . . . . . . 7 (𝜑 → (1r𝐹) ∈ 𝐾)
269, 10grpinvcl 17238 . . . . . . 7 ((𝐹 ∈ Grp ∧ (1r𝐹) ∈ 𝐾) → ((invg𝐹)‘(1r𝐹)) ∈ 𝐾)
277, 25, 26syl2anc 690 . . . . . 6 (𝜑 → ((invg𝐹)‘(1r𝐹)) ∈ 𝐾)
2814, 3, 16, 9, 20lmodvsass 18659 . . . . . 6 ((𝑊 ∈ LMod ∧ (((invg𝐹)‘(1r𝐹)) ∈ 𝐾𝐵𝐾𝑋𝑉)) → ((((invg𝐹)‘(1r𝐹))(.r𝐹)𝐵) · 𝑋) = (((invg𝐹)‘(1r𝐹)) · (𝐵 · 𝑋)))
291, 27, 8, 13, 28syl13anc 1319 . . . . 5 (𝜑 → ((((invg𝐹)‘(1r𝐹))(.r𝐹)𝐵) · 𝑋) = (((invg𝐹)‘(1r𝐹)) · (𝐵 · 𝑋)))
3023, 29eqtr3d 2645 . . . 4 (𝜑 → (((invg𝐹)‘𝐵) · 𝑋) = (((invg𝐹)‘(1r𝐹)) · (𝐵 · 𝑋)))
3130oveq2d 6542 . . 3 (𝜑 → ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘𝐵) · 𝑋)) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘(1r𝐹)) · (𝐵 · 𝑋))))
3219, 31eqtrd 2643 . 2 (𝜑 → ((𝐴(+g𝐹)((invg𝐹)‘𝐵)) · 𝑋) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘(1r𝐹)) · (𝐵 · 𝑋))))
33 lmodsubdir.s . . . . 5 𝑆 = (-g𝐹)
349, 17, 10, 33grpsubval 17236 . . . 4 ((𝐴𝐾𝐵𝐾) → (𝐴𝑆𝐵) = (𝐴(+g𝐹)((invg𝐹)‘𝐵)))
352, 8, 34syl2anc 690 . . 3 (𝜑 → (𝐴𝑆𝐵) = (𝐴(+g𝐹)((invg𝐹)‘𝐵)))
3635oveq1d 6541 . 2 (𝜑 → ((𝐴𝑆𝐵) · 𝑋) = ((𝐴(+g𝐹)((invg𝐹)‘𝐵)) · 𝑋))
3714, 3, 16, 9lmodvscl 18651 . . . 4 ((𝑊 ∈ LMod ∧ 𝐴𝐾𝑋𝑉) → (𝐴 · 𝑋) ∈ 𝑉)
381, 2, 13, 37syl3anc 1317 . . 3 (𝜑 → (𝐴 · 𝑋) ∈ 𝑉)
3914, 3, 16, 9lmodvscl 18651 . . . 4 ((𝑊 ∈ LMod ∧ 𝐵𝐾𝑋𝑉) → (𝐵 · 𝑋) ∈ 𝑉)
401, 8, 13, 39syl3anc 1317 . . 3 (𝜑 → (𝐵 · 𝑋) ∈ 𝑉)
41 lmodsubdir.m . . . 4 = (-g𝑊)
4214, 15, 41, 3, 16, 10, 21lmodvsubval2 18689 . . 3 ((𝑊 ∈ LMod ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ (𝐵 · 𝑋) ∈ 𝑉) → ((𝐴 · 𝑋) (𝐵 · 𝑋)) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘(1r𝐹)) · (𝐵 · 𝑋))))
431, 38, 40, 42syl3anc 1317 . 2 (𝜑 → ((𝐴 · 𝑋) (𝐵 · 𝑋)) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘(1r𝐹)) · (𝐵 · 𝑋))))
4432, 36, 433eqtr4d 2653 1 (𝜑 → ((𝐴𝑆𝐵) · 𝑋) = ((𝐴 · 𝑋) (𝐵 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1474  wcel 1976  cfv 5789  (class class class)co 6526  Basecbs 15643  +gcplusg 15716  .rcmulr 15717  Scalarcsca 15719   ·𝑠 cvsca 15720  Grpcgrp 17193  invgcminusg 17194  -gcsg 17195  1rcur 18272  Ringcrg 18318  LModclmod 18634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10870  df-2 10928  df-ndx 15646  df-slot 15647  df-base 15648  df-sets 15649  df-plusg 15729  df-0g 15873  df-mgm 17013  df-sgrp 17055  df-mnd 17066  df-grp 17196  df-minusg 17197  df-sbg 17198  df-mgp 18261  df-ur 18273  df-ring 18320  df-lmod 18636
This theorem is referenced by:  lvecvscan2  18881  scmatsubcl  20089  nlmdsdir  22243  clmsubdir  22657  ttgcontlem1  25510
  Copyright terms: Public domain W3C validator