MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  maxprmfct Structured version   Visualization version   GIF version

Theorem maxprmfct 16053
Description: The set of prime factors of an integer greater than or equal to 2 satisfies the conditions to have a supremum, and that supremum is a member of the set. (Contributed by Paul Chapman, 17-Nov-2012.)
Hypothesis
Ref Expression
maxprmfct.1 𝑆 = {𝑧 ∈ ℙ ∣ 𝑧𝑁}
Assertion
Ref Expression
maxprmfct (𝑁 ∈ (ℤ‘2) → ((𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥) ∧ sup(𝑆, ℝ, < ) ∈ 𝑆))
Distinct variable groups:   𝑥,𝑁,𝑦   𝑧,𝑁,𝑦   𝑥,𝑆,𝑦
Allowed substitution hint:   𝑆(𝑧)

Proof of Theorem maxprmfct
StepHypRef Expression
1 maxprmfct.1 . . . . . 6 𝑆 = {𝑧 ∈ ℙ ∣ 𝑧𝑁}
21ssrab3 4057 . . . . 5 𝑆 ⊆ ℙ
3 prmz 16019 . . . . . 6 (𝑦 ∈ ℙ → 𝑦 ∈ ℤ)
43ssriv 3971 . . . . 5 ℙ ⊆ ℤ
52, 4sstri 3976 . . . 4 𝑆 ⊆ ℤ
65a1i 11 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑆 ⊆ ℤ)
7 exprmfct 16048 . . . 4 (𝑁 ∈ (ℤ‘2) → ∃𝑦 ∈ ℙ 𝑦𝑁)
8 breq1 5069 . . . . . . 7 (𝑧 = 𝑦 → (𝑧𝑁𝑦𝑁))
98, 1elrab2 3683 . . . . . 6 (𝑦𝑆 ↔ (𝑦 ∈ ℙ ∧ 𝑦𝑁))
109exbii 1848 . . . . 5 (∃𝑦 𝑦𝑆 ↔ ∃𝑦(𝑦 ∈ ℙ ∧ 𝑦𝑁))
11 n0 4310 . . . . 5 (𝑆 ≠ ∅ ↔ ∃𝑦 𝑦𝑆)
12 df-rex 3144 . . . . 5 (∃𝑦 ∈ ℙ 𝑦𝑁 ↔ ∃𝑦(𝑦 ∈ ℙ ∧ 𝑦𝑁))
1310, 11, 123bitr4ri 306 . . . 4 (∃𝑦 ∈ ℙ 𝑦𝑁𝑆 ≠ ∅)
147, 13sylib 220 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑆 ≠ ∅)
15 eluzelz 12254 . . . 4 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
16 eluz2nn 12285 . . . . 5 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
173anim1i 616 . . . . . . . 8 ((𝑦 ∈ ℙ ∧ 𝑦𝑁) → (𝑦 ∈ ℤ ∧ 𝑦𝑁))
189, 17sylbi 219 . . . . . . 7 (𝑦𝑆 → (𝑦 ∈ ℤ ∧ 𝑦𝑁))
19 dvdsle 15660 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑦𝑁𝑦𝑁))
2019expcom 416 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑦 ∈ ℤ → (𝑦𝑁𝑦𝑁)))
2120impd 413 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑦 ∈ ℤ ∧ 𝑦𝑁) → 𝑦𝑁))
2218, 21syl5 34 . . . . . 6 (𝑁 ∈ ℕ → (𝑦𝑆𝑦𝑁))
2322ralrimiv 3181 . . . . 5 (𝑁 ∈ ℕ → ∀𝑦𝑆 𝑦𝑁)
2416, 23syl 17 . . . 4 (𝑁 ∈ (ℤ‘2) → ∀𝑦𝑆 𝑦𝑁)
25 brralrspcev 5126 . . . 4 ((𝑁 ∈ ℤ ∧ ∀𝑦𝑆 𝑦𝑁) → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)
2615, 24, 25syl2anc 586 . . 3 (𝑁 ∈ (ℤ‘2) → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)
276, 14, 263jca 1124 . 2 (𝑁 ∈ (ℤ‘2) → (𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
28 suprzcl2 12339 . 2 ((𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥) → sup(𝑆, ℝ, < ) ∈ 𝑆)
2927, 28jccir 524 1 (𝑁 ∈ (ℤ‘2) → ((𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥) ∧ sup(𝑆, ℝ, < ) ∈ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wne 3016  wral 3138  wrex 3139  {crab 3142  wss 3936  c0 4291   class class class wbr 5066  cfv 6355  supcsup 8904  cr 10536   < clt 10675  cle 10676  cn 11638  2c2 11693  cz 11982  cuz 12244  cdvds 15607  cprime 16015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-dvds 15608  df-prm 16016
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator