MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isprm7 Structured version   Visualization version   GIF version

Theorem isprm7 16052
Description: One need only check prime divisors of 𝑃 up to 𝑃 in order to ensure primality. This version of isprm5 16051 combines the primality and bound on 𝑧 into a finite interval of prime numbers. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
isprm7 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) ¬ 𝑧𝑃))
Distinct variable group:   𝑧,𝑃

Proof of Theorem isprm7
StepHypRef Expression
1 isprm5 16051 . 2 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
2 prmz 16019 . . . . . . . 8 (𝑧 ∈ ℙ → 𝑧 ∈ ℤ)
32zred 12088 . . . . . . 7 (𝑧 ∈ ℙ → 𝑧 ∈ ℝ)
4 0red 10644 . . . . . . . 8 (𝑧 ∈ ℙ → 0 ∈ ℝ)
5 1red 10642 . . . . . . . . 9 (𝑧 ∈ ℙ → 1 ∈ ℝ)
6 0lt1 11162 . . . . . . . . . 10 0 < 1
76a1i 11 . . . . . . . . 9 (𝑧 ∈ ℙ → 0 < 1)
8 prmgt1 16041 . . . . . . . . 9 (𝑧 ∈ ℙ → 1 < 𝑧)
94, 5, 3, 7, 8lttrd 10801 . . . . . . . 8 (𝑧 ∈ ℙ → 0 < 𝑧)
104, 3, 9ltled 10788 . . . . . . 7 (𝑧 ∈ ℙ → 0 ≤ 𝑧)
113, 10jca 514 . . . . . 6 (𝑧 ∈ ℙ → (𝑧 ∈ ℝ ∧ 0 ≤ 𝑧))
12 eluzelre 12255 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℝ)
13 0red 10644 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → 0 ∈ ℝ)
14 2re 11712 . . . . . . . . 9 2 ∈ ℝ
1514a1i 11 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → 2 ∈ ℝ)
16 0le2 11740 . . . . . . . . 9 0 ≤ 2
1716a1i 11 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → 0 ≤ 2)
18 eluzle 12257 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → 2 ≤ 𝑃)
1913, 15, 12, 17, 18letrd 10797 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → 0 ≤ 𝑃)
2012, 19jca 514 . . . . . 6 (𝑃 ∈ (ℤ‘2) → (𝑃 ∈ ℝ ∧ 0 ≤ 𝑃))
21 resqcl 13491 . . . . . . . . . 10 (𝑧 ∈ ℝ → (𝑧↑2) ∈ ℝ)
22 sqge0 13502 . . . . . . . . . 10 (𝑧 ∈ ℝ → 0 ≤ (𝑧↑2))
2321, 22jca 514 . . . . . . . . 9 (𝑧 ∈ ℝ → ((𝑧↑2) ∈ ℝ ∧ 0 ≤ (𝑧↑2)))
2423adantr 483 . . . . . . . 8 ((𝑧 ∈ ℝ ∧ 0 ≤ 𝑧) → ((𝑧↑2) ∈ ℝ ∧ 0 ≤ (𝑧↑2)))
25 sqrtle 14620 . . . . . . . 8 ((((𝑧↑2) ∈ ℝ ∧ 0 ≤ (𝑧↑2)) ∧ (𝑃 ∈ ℝ ∧ 0 ≤ 𝑃)) → ((𝑧↑2) ≤ 𝑃 ↔ (√‘(𝑧↑2)) ≤ (√‘𝑃)))
2624, 25sylan 582 . . . . . . 7 (((𝑧 ∈ ℝ ∧ 0 ≤ 𝑧) ∧ (𝑃 ∈ ℝ ∧ 0 ≤ 𝑃)) → ((𝑧↑2) ≤ 𝑃 ↔ (√‘(𝑧↑2)) ≤ (√‘𝑃)))
27 sqrtsq 14629 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ 0 ≤ 𝑧) → (√‘(𝑧↑2)) = 𝑧)
2827breq1d 5076 . . . . . . . 8 ((𝑧 ∈ ℝ ∧ 0 ≤ 𝑧) → ((√‘(𝑧↑2)) ≤ (√‘𝑃) ↔ 𝑧 ≤ (√‘𝑃)))
2928adantr 483 . . . . . . 7 (((𝑧 ∈ ℝ ∧ 0 ≤ 𝑧) ∧ (𝑃 ∈ ℝ ∧ 0 ≤ 𝑃)) → ((√‘(𝑧↑2)) ≤ (√‘𝑃) ↔ 𝑧 ≤ (√‘𝑃)))
3026, 29bitrd 281 . . . . . 6 (((𝑧 ∈ ℝ ∧ 0 ≤ 𝑧) ∧ (𝑃 ∈ ℝ ∧ 0 ≤ 𝑃)) → ((𝑧↑2) ≤ 𝑃𝑧 ≤ (√‘𝑃)))
3111, 20, 30syl2anr 598 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ ℙ) → ((𝑧↑2) ≤ 𝑃𝑧 ≤ (√‘𝑃)))
3231imbi1d 344 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ ℙ) → (((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃) ↔ (𝑧 ≤ (√‘𝑃) → ¬ 𝑧𝑃)))
3332ralbidva 3196 . . 3 (𝑃 ∈ (ℤ‘2) → (∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃) ↔ ∀𝑧 ∈ ℙ (𝑧 ≤ (√‘𝑃) → ¬ 𝑧𝑃)))
3433pm5.32i 577 . 2 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)) ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ (𝑧 ≤ (√‘𝑃) → ¬ 𝑧𝑃)))
35 impexp 453 . . . . 5 (((𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃)) → ¬ 𝑧𝑃) ↔ (𝑧 ∈ ℙ → (𝑧 ≤ (√‘𝑃) → ¬ 𝑧𝑃)))
3612, 19resqrtcld 14777 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℤ‘2) → (√‘𝑃) ∈ ℝ)
3736flcld 13169 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘2) → (⌊‘(√‘𝑃)) ∈ ℤ)
3837, 2anim12i 614 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ ℙ) → ((⌊‘(√‘𝑃)) ∈ ℤ ∧ 𝑧 ∈ ℤ))
3938adantr 483 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ ℙ) ∧ 𝑧 ≤ (√‘𝑃)) → ((⌊‘(√‘𝑃)) ∈ ℤ ∧ 𝑧 ∈ ℤ))
40 prmuz2 16040 . . . . . . . . . . . . 13 (𝑧 ∈ ℙ → 𝑧 ∈ (ℤ‘2))
41 eluzle 12257 . . . . . . . . . . . . 13 (𝑧 ∈ (ℤ‘2) → 2 ≤ 𝑧)
4240, 41syl 17 . . . . . . . . . . . 12 (𝑧 ∈ ℙ → 2 ≤ 𝑧)
4342ad2antlr 725 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ ℙ) ∧ 𝑧 ≤ (√‘𝑃)) → 2 ≤ 𝑧)
44 flge 13176 . . . . . . . . . . . . 13 (((√‘𝑃) ∈ ℝ ∧ 𝑧 ∈ ℤ) → (𝑧 ≤ (√‘𝑃) ↔ 𝑧 ≤ (⌊‘(√‘𝑃))))
4536, 2, 44syl2an 597 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ ℙ) → (𝑧 ≤ (√‘𝑃) ↔ 𝑧 ≤ (⌊‘(√‘𝑃))))
4645biimpa 479 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ ℙ) ∧ 𝑧 ≤ (√‘𝑃)) → 𝑧 ≤ (⌊‘(√‘𝑃)))
47 2z 12015 . . . . . . . . . . . 12 2 ∈ ℤ
48 elfz4 12902 . . . . . . . . . . . 12 (((2 ∈ ℤ ∧ (⌊‘(√‘𝑃)) ∈ ℤ ∧ 𝑧 ∈ ℤ) ∧ (2 ≤ 𝑧𝑧 ≤ (⌊‘(√‘𝑃)))) → 𝑧 ∈ (2...(⌊‘(√‘𝑃))))
4947, 48mp3anl1 1451 . . . . . . . . . . 11 ((((⌊‘(√‘𝑃)) ∈ ℤ ∧ 𝑧 ∈ ℤ) ∧ (2 ≤ 𝑧𝑧 ≤ (⌊‘(√‘𝑃)))) → 𝑧 ∈ (2...(⌊‘(√‘𝑃))))
5039, 43, 46, 49syl12anc 834 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ ℙ) ∧ 𝑧 ≤ (√‘𝑃)) → 𝑧 ∈ (2...(⌊‘(√‘𝑃))))
5150anasss 469 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃))) → 𝑧 ∈ (2...(⌊‘(√‘𝑃))))
52 simprl 769 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃))) → 𝑧 ∈ ℙ)
5351, 52elind 4171 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ (𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃))) → 𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ))
5453ex 415 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → ((𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃)) → 𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ)))
55 elin 4169 . . . . . . . . 9 (𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) ↔ (𝑧 ∈ (2...(⌊‘(√‘𝑃))) ∧ 𝑧 ∈ ℙ))
56 elfzelz 12909 . . . . . . . . . . . . . 14 (𝑧 ∈ (2...(⌊‘(√‘𝑃))) → 𝑧 ∈ ℤ)
5756zred 12088 . . . . . . . . . . . . 13 (𝑧 ∈ (2...(⌊‘(√‘𝑃))) → 𝑧 ∈ ℝ)
5857adantl 484 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (2...(⌊‘(√‘𝑃)))) → 𝑧 ∈ ℝ)
59 reflcl 13167 . . . . . . . . . . . . . 14 ((√‘𝑃) ∈ ℝ → (⌊‘(√‘𝑃)) ∈ ℝ)
6036, 59syl 17 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘2) → (⌊‘(√‘𝑃)) ∈ ℝ)
6160adantr 483 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (2...(⌊‘(√‘𝑃)))) → (⌊‘(√‘𝑃)) ∈ ℝ)
6236adantr 483 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (2...(⌊‘(√‘𝑃)))) → (√‘𝑃) ∈ ℝ)
63 elfzle2 12912 . . . . . . . . . . . . 13 (𝑧 ∈ (2...(⌊‘(√‘𝑃))) → 𝑧 ≤ (⌊‘(√‘𝑃)))
6463adantl 484 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (2...(⌊‘(√‘𝑃)))) → 𝑧 ≤ (⌊‘(√‘𝑃)))
65 flle 13170 . . . . . . . . . . . . . 14 ((√‘𝑃) ∈ ℝ → (⌊‘(√‘𝑃)) ≤ (√‘𝑃))
6636, 65syl 17 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘2) → (⌊‘(√‘𝑃)) ≤ (√‘𝑃))
6766adantr 483 . . . . . . . . . . . 12 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (2...(⌊‘(√‘𝑃)))) → (⌊‘(√‘𝑃)) ≤ (√‘𝑃))
6858, 61, 62, 64, 67letrd 10797 . . . . . . . . . . 11 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (2...(⌊‘(√‘𝑃)))) → 𝑧 ≤ (√‘𝑃))
6968ex 415 . . . . . . . . . 10 (𝑃 ∈ (ℤ‘2) → (𝑧 ∈ (2...(⌊‘(√‘𝑃))) → 𝑧 ≤ (√‘𝑃)))
7069anim1d 612 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → ((𝑧 ∈ (2...(⌊‘(√‘𝑃))) ∧ 𝑧 ∈ ℙ) → (𝑧 ≤ (√‘𝑃) ∧ 𝑧 ∈ ℙ)))
7155, 70syl5bi 244 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → (𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) → (𝑧 ≤ (√‘𝑃) ∧ 𝑧 ∈ ℙ)))
72 ancom 463 . . . . . . . 8 ((𝑧 ≤ (√‘𝑃) ∧ 𝑧 ∈ ℙ) ↔ (𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃)))
7371, 72syl6ib 253 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → (𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) → (𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃))))
7454, 73impbid 214 . . . . . 6 (𝑃 ∈ (ℤ‘2) → ((𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃)) ↔ 𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ)))
7574imbi1d 344 . . . . 5 (𝑃 ∈ (ℤ‘2) → (((𝑧 ∈ ℙ ∧ 𝑧 ≤ (√‘𝑃)) → ¬ 𝑧𝑃) ↔ (𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) → ¬ 𝑧𝑃)))
7635, 75syl5bbr 287 . . . 4 (𝑃 ∈ (ℤ‘2) → ((𝑧 ∈ ℙ → (𝑧 ≤ (√‘𝑃) → ¬ 𝑧𝑃)) ↔ (𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) → ¬ 𝑧𝑃)))
7776ralbidv2 3195 . . 3 (𝑃 ∈ (ℤ‘2) → (∀𝑧 ∈ ℙ (𝑧 ≤ (√‘𝑃) → ¬ 𝑧𝑃) ↔ ∀𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) ¬ 𝑧𝑃))
7877pm5.32i 577 . 2 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ (𝑧 ≤ (√‘𝑃) → ¬ 𝑧𝑃)) ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) ¬ 𝑧𝑃))
791, 34, 783bitri 299 1 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ((2...(⌊‘(√‘𝑃))) ∩ ℙ) ¬ 𝑧𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wcel 2114  wral 3138  cin 3935   class class class wbr 5066  cfv 6355  (class class class)co 7156  cr 10536  0cc0 10537  1c1 10538   < clt 10675  cle 10676  2c2 11693  cz 11982  cuz 12244  ...cfz 12893  cfl 13161  cexp 13430  csqrt 14592  cdvds 15607  cprime 16015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-fl 13163  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-dvds 15608  df-prm 16016
This theorem is referenced by:  fmtno4prm  43757  31prm  43780
  Copyright terms: Public domain W3C validator