MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegxrcl Structured version   Visualization version   GIF version

Theorem mdegxrcl 23731
Description: Closure of polynomial degree in the extended reals. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.)
Hypotheses
Ref Expression
mdegxrcl.d 𝐷 = (𝐼 mDeg 𝑅)
mdegxrcl.p 𝑃 = (𝐼 mPoly 𝑅)
mdegxrcl.b 𝐵 = (Base‘𝑃)
Assertion
Ref Expression
mdegxrcl (𝐹𝐵 → (𝐷𝐹) ∈ ℝ*)

Proof of Theorem mdegxrcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegxrcl.d . . 3 𝐷 = (𝐼 mDeg 𝑅)
2 mdegxrcl.p . . 3 𝑃 = (𝐼 mPoly 𝑅)
3 mdegxrcl.b . . 3 𝐵 = (Base‘𝑃)
4 eqid 2621 . . 3 (0g𝑅) = (0g𝑅)
5 eqid 2621 . . 3 {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} = {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin}
6 eqid 2621 . . 3 (𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) = (𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦))
71, 2, 3, 4, 5, 6mdegval 23727 . 2 (𝐹𝐵 → (𝐷𝐹) = sup(((𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ (𝐹 supp (0g𝑅))), ℝ*, < ))
8 imassrn 5436 . . . 4 ((𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ (𝐹 supp (0g𝑅))) ⊆ ran (𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦))
92, 3mplrcl 19409 . . . . . 6 (𝐹𝐵𝐼 ∈ V)
105, 6tdeglem1 23722 . . . . . 6 (𝐼 ∈ V → (𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)):{𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin}⟶ℕ0)
11 frn 6010 . . . . . 6 ((𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)):{𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin}⟶ℕ0 → ran (𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) ⊆ ℕ0)
129, 10, 113syl 18 . . . . 5 (𝐹𝐵 → ran (𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) ⊆ ℕ0)
13 nn0ssre 11240 . . . . . 6 0 ⊆ ℝ
14 ressxr 10027 . . . . . 6 ℝ ⊆ ℝ*
1513, 14sstri 3592 . . . . 5 0 ⊆ ℝ*
1612, 15syl6ss 3595 . . . 4 (𝐹𝐵 → ran (𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) ⊆ ℝ*)
178, 16syl5ss 3594 . . 3 (𝐹𝐵 → ((𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ (𝐹 supp (0g𝑅))) ⊆ ℝ*)
18 supxrcl 12088 . . 3 (((𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ (𝐹 supp (0g𝑅))) ⊆ ℝ* → sup(((𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ (𝐹 supp (0g𝑅))), ℝ*, < ) ∈ ℝ*)
1917, 18syl 17 . 2 (𝐹𝐵 → sup(((𝑦 ∈ {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ (𝑥 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑦)) “ (𝐹 supp (0g𝑅))), ℝ*, < ) ∈ ℝ*)
207, 19eqeltrd 2698 1 (𝐹𝐵 → (𝐷𝐹) ∈ ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  {crab 2911  Vcvv 3186  wss 3555  cmpt 4673  ccnv 5073  ran crn 5075  cima 5077  wf 5843  cfv 5847  (class class class)co 6604   supp csupp 7240  𝑚 cmap 7802  Fincfn 7899  supcsup 8290  cr 9879  *cxr 10017   < clt 10018  cn 10964  0cn0 11236  Basecbs 15781  0gc0g 16021   Σg cgsu 16022   mPoly cmpl 19272  fldccnfld 19665   mDeg cmdg 23717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-sup 8292  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-fz 12269  df-fzo 12407  df-seq 12742  df-hash 13058  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-0g 16023  df-gsum 16024  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-grp 17346  df-minusg 17347  df-cntz 17671  df-cmn 18116  df-abl 18117  df-mgp 18411  df-ur 18423  df-ring 18470  df-cring 18471  df-psr 19275  df-mpl 19277  df-cnfld 19666  df-mdeg 23719
This theorem is referenced by:  mdegxrf  23732  mdegaddle  23738  mdegvscale  23739  mdegmullem  23742
  Copyright terms: Public domain W3C validator