MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmvscn Structured version   Visualization version   GIF version

Theorem nlmvscn 23296
Description: The scalar multiplication of a normed module is continuous. Lemma for nrgtrg 23299 and nlmtlm 23303. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
nlmvscn.f 𝐹 = (Scalar‘𝑊)
nlmvscn.sf · = ( ·sf𝑊)
nlmvscn.j 𝐽 = (TopOpen‘𝑊)
nlmvscn.kf 𝐾 = (TopOpen‘𝐹)
Assertion
Ref Expression
nlmvscn (𝑊 ∈ NrmMod → · ∈ ((𝐾 ×t 𝐽) Cn 𝐽))

Proof of Theorem nlmvscn
Dummy variables 𝑟 𝑥 𝑦 𝑠 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nlmlmod 23287 . . . 4 (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)
2 eqid 2821 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
3 nlmvscn.f . . . . 5 𝐹 = (Scalar‘𝑊)
4 eqid 2821 . . . . 5 (Base‘𝐹) = (Base‘𝐹)
5 nlmvscn.sf . . . . 5 · = ( ·sf𝑊)
62, 3, 4, 5lmodscaf 19656 . . . 4 (𝑊 ∈ LMod → · :((Base‘𝐹) × (Base‘𝑊))⟶(Base‘𝑊))
71, 6syl 17 . . 3 (𝑊 ∈ NrmMod → · :((Base‘𝐹) × (Base‘𝑊))⟶(Base‘𝑊))
8 eqid 2821 . . . . . . 7 (dist‘𝑊) = (dist‘𝑊)
9 eqid 2821 . . . . . . 7 (dist‘𝐹) = (dist‘𝐹)
10 eqid 2821 . . . . . . 7 (norm‘𝑊) = (norm‘𝑊)
11 eqid 2821 . . . . . . 7 (norm‘𝐹) = (norm‘𝐹)
12 eqid 2821 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
13 eqid 2821 . . . . . . 7 ((𝑟 / 2) / (((norm‘𝐹)‘𝑥) + 1)) = ((𝑟 / 2) / (((norm‘𝐹)‘𝑥) + 1))
14 eqid 2821 . . . . . . 7 ((𝑟 / 2) / (((norm‘𝑊)‘𝑦) + ((𝑟 / 2) / (((norm‘𝐹)‘𝑥) + 1)))) = ((𝑟 / 2) / (((norm‘𝑊)‘𝑦) + ((𝑟 / 2) / (((norm‘𝐹)‘𝑥) + 1))))
15 simpll 765 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → 𝑊 ∈ NrmMod)
16 simpr 487 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
17 simplrl 775 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → 𝑥 ∈ (Base‘𝐹))
18 simplrr 776 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → 𝑦 ∈ (Base‘𝑊))
193, 2, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18nlmvscnlem1 23295 . . . . . 6 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ 𝑟 ∈ ℝ+) → ∃𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝐹)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → ((𝑥( ·𝑠𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠𝑊)𝑤)) < 𝑟))
2019ralrimiva 3182 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) → ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝐹)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → ((𝑥( ·𝑠𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠𝑊)𝑤)) < 𝑟))
21 simplrl 775 . . . . . . . . . . . 12 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝐹))
22 simprl 769 . . . . . . . . . . . 12 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑧 ∈ (Base‘𝐹))
2321, 22ovresd 7315 . . . . . . . . . . 11 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) = (𝑥(dist‘𝐹)𝑧))
2423breq1d 5076 . . . . . . . . . 10 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ↔ (𝑥(dist‘𝐹)𝑧) < 𝑠))
25 simplrr 776 . . . . . . . . . . . 12 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
26 simprr 771 . . . . . . . . . . . 12 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑤 ∈ (Base‘𝑊))
2725, 26ovresd 7315 . . . . . . . . . . 11 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) = (𝑦(dist‘𝑊)𝑤))
2827breq1d 5076 . . . . . . . . . 10 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠 ↔ (𝑦(dist‘𝑊)𝑤) < 𝑠))
2924, 28anbi12d 632 . . . . . . . . 9 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → (((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) ↔ ((𝑥(dist‘𝐹)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠)))
302, 3, 4, 5, 12scafval 19653 . . . . . . . . . . . . 13 ((𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥 · 𝑦) = (𝑥( ·𝑠𝑊)𝑦))
3130ad2antlr 725 . . . . . . . . . . . 12 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑥 · 𝑦) = (𝑥( ·𝑠𝑊)𝑦))
322, 3, 4, 5, 12scafval 19653 . . . . . . . . . . . . 13 ((𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊)) → (𝑧 · 𝑤) = (𝑧( ·𝑠𝑊)𝑤))
3332adantl 484 . . . . . . . . . . . 12 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑧 · 𝑤) = (𝑧( ·𝑠𝑊)𝑤))
3431, 33oveq12d 7174 . . . . . . . . . . 11 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) = ((𝑥( ·𝑠𝑊)𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧( ·𝑠𝑊)𝑤)))
351ad2antrr 724 . . . . . . . . . . . . 13 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → 𝑊 ∈ LMod)
362, 3, 12, 4lmodvscl 19651 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥( ·𝑠𝑊)𝑦) ∈ (Base‘𝑊))
3735, 21, 25, 36syl3anc 1367 . . . . . . . . . . . 12 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑥( ·𝑠𝑊)𝑦) ∈ (Base‘𝑊))
382, 3, 12, 4lmodvscl 19651 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊)) → (𝑧( ·𝑠𝑊)𝑤) ∈ (Base‘𝑊))
3935, 22, 26, 38syl3anc 1367 . . . . . . . . . . . 12 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → (𝑧( ·𝑠𝑊)𝑤) ∈ (Base‘𝑊))
4037, 39ovresd 7315 . . . . . . . . . . 11 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑥( ·𝑠𝑊)𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧( ·𝑠𝑊)𝑤)) = ((𝑥( ·𝑠𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠𝑊)𝑤)))
4134, 40eqtrd 2856 . . . . . . . . . 10 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) = ((𝑥( ·𝑠𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠𝑊)𝑤)))
4241breq1d 5076 . . . . . . . . 9 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → (((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟 ↔ ((𝑥( ·𝑠𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠𝑊)𝑤)) < 𝑟))
4329, 42imbi12d 347 . . . . . . . 8 (((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) ∧ (𝑧 ∈ (Base‘𝐹) ∧ 𝑤 ∈ (Base‘𝑊))) → ((((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟) ↔ (((𝑥(dist‘𝐹)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → ((𝑥( ·𝑠𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠𝑊)𝑤)) < 𝑟)))
44432ralbidva 3198 . . . . . . 7 ((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) → (∀𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟) ↔ ∀𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝐹)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → ((𝑥( ·𝑠𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠𝑊)𝑤)) < 𝑟)))
4544rexbidv 3297 . . . . . 6 ((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) → (∃𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟) ↔ ∃𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝐹)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → ((𝑥( ·𝑠𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠𝑊)𝑤)) < 𝑟)))
4645ralbidv 3197 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) → (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟) ↔ ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥(dist‘𝐹)𝑧) < 𝑠 ∧ (𝑦(dist‘𝑊)𝑤) < 𝑠) → ((𝑥( ·𝑠𝑊)𝑦)(dist‘𝑊)(𝑧( ·𝑠𝑊)𝑤)) < 𝑟)))
4720, 46mpbird 259 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝑊))) → ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟))
4847ralrimivva 3191 . . 3 (𝑊 ∈ NrmMod → ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝑊)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟))
493nlmngp2 23289 . . . . . 6 (𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp)
50 ngpms 23209 . . . . . 6 (𝐹 ∈ NrmGrp → 𝐹 ∈ MetSp)
5149, 50syl 17 . . . . 5 (𝑊 ∈ NrmMod → 𝐹 ∈ MetSp)
52 msxms 23064 . . . . 5 (𝐹 ∈ MetSp → 𝐹 ∈ ∞MetSp)
53 eqid 2821 . . . . . 6 ((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹))) = ((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))
544, 53xmsxmet 23066 . . . . 5 (𝐹 ∈ ∞MetSp → ((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹))) ∈ (∞Met‘(Base‘𝐹)))
5551, 52, 543syl 18 . . . 4 (𝑊 ∈ NrmMod → ((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹))) ∈ (∞Met‘(Base‘𝐹)))
56 nlmngp 23286 . . . . . 6 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
57 ngpms 23209 . . . . . 6 (𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp)
5856, 57syl 17 . . . . 5 (𝑊 ∈ NrmMod → 𝑊 ∈ MetSp)
59 msxms 23064 . . . . 5 (𝑊 ∈ MetSp → 𝑊 ∈ ∞MetSp)
60 eqid 2821 . . . . . 6 ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) = ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))
612, 60xmsxmet 23066 . . . . 5 (𝑊 ∈ ∞MetSp → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)))
6258, 59, 613syl 18 . . . 4 (𝑊 ∈ NrmMod → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)))
63 eqid 2821 . . . . 5 (MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))) = (MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹))))
64 eqid 2821 . . . . 5 (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))
6563, 64, 64txmetcn 23158 . . . 4 ((((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹))) ∈ (∞Met‘(Base‘𝐹)) ∧ ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)) ∧ ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊))) → ( · ∈ (((MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))) ×t (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) Cn (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) ↔ ( · :((Base‘𝐹) × (Base‘𝑊))⟶(Base‘𝑊) ∧ ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝑊)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟))))
6655, 62, 62, 65syl3anc 1367 . . 3 (𝑊 ∈ NrmMod → ( · ∈ (((MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))) ×t (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) Cn (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) ↔ ( · :((Base‘𝐹) × (Base‘𝑊))⟶(Base‘𝑊) ∧ ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝑊)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (Base‘𝐹)∀𝑤 ∈ (Base‘𝑊)(((𝑥((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))𝑧) < 𝑠 ∧ (𝑦((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝑤) < 𝑠) → ((𝑥 · 𝑦)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(𝑧 · 𝑤)) < 𝑟))))
677, 48, 66mpbir2and 711 . 2 (𝑊 ∈ NrmMod → · ∈ (((MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))) ×t (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) Cn (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))))
68 nlmvscn.kf . . . . . 6 𝐾 = (TopOpen‘𝐹)
6968, 4, 53mstopn 23062 . . . . 5 (𝐹 ∈ MetSp → 𝐾 = (MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))))
7051, 69syl 17 . . . 4 (𝑊 ∈ NrmMod → 𝐾 = (MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))))
71 nlmvscn.j . . . . . 6 𝐽 = (TopOpen‘𝑊)
7271, 2, 60mstopn 23062 . . . . 5 (𝑊 ∈ MetSp → 𝐽 = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))))
7358, 72syl 17 . . . 4 (𝑊 ∈ NrmMod → 𝐽 = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))))
7470, 73oveq12d 7174 . . 3 (𝑊 ∈ NrmMod → (𝐾 ×t 𝐽) = ((MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))) ×t (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))))
7574, 73oveq12d 7174 . 2 (𝑊 ∈ NrmMod → ((𝐾 ×t 𝐽) Cn 𝐽) = (((MetOpen‘((dist‘𝐹) ↾ ((Base‘𝐹) × (Base‘𝐹)))) ×t (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))) Cn (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))))
7667, 75eleqtrrd 2916 1 (𝑊 ∈ NrmMod → · ∈ ((𝐾 ×t 𝐽) Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  wrex 3139   class class class wbr 5066   × cxp 5553  cres 5557  wf 6351  cfv 6355  (class class class)co 7156  1c1 10538   + caddc 10540   < clt 10675   / cdiv 11297  2c2 11693  +crp 12390  Basecbs 16483  Scalarcsca 16568   ·𝑠 cvsca 16569  distcds 16574  TopOpenctopn 16695  LModclmod 19634   ·sf cscaf 19635  ∞Metcxmet 20530  MetOpencmopn 20535   Cn ccn 21832   ×t ctx 22168  ∞MetSpcxms 22927  MetSpcms 22928  normcnm 23186  NrmGrpcngp 23187  NrmModcnlm 23190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-icc 12746  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-mgp 19240  df-ur 19252  df-ring 19299  df-lmod 19636  df-scaf 19637  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cn 21835  df-cnp 21836  df-tx 22170  df-hmeo 22363  df-xms 22930  df-ms 22931  df-tms 22932  df-nm 23192  df-ngp 23193  df-nrg 23195  df-nlm 23196
This theorem is referenced by:  nrgtrg  23299  nlmtlm  23303
  Copyright terms: Public domain W3C validator