MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txmetcn Structured version   Visualization version   GIF version

Theorem txmetcn 22101
Description: Continuity of a binary operation on metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
metcn.2 𝐽 = (MetOpen‘𝐶)
metcn.4 𝐾 = (MetOpen‘𝐷)
txmetcnp.4 𝐿 = (MetOpen‘𝐸)
Assertion
Ref Expression
txmetcn ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → (𝐹 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑥𝑋𝑦𝑌𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧))))
Distinct variable groups:   𝑣,𝑢,𝑤,𝑥,𝑦,𝑧,𝐹   𝑢,𝐽,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢,𝐾,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢,𝑋,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢,𝑌,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢,𝑍,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢,𝐶,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢,𝐷,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢,𝐸,𝑣,𝑤,𝑥,𝑦,𝑧   𝑤,𝐿,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐿(𝑣,𝑢)

Proof of Theorem txmetcn
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 metcn.2 . . . . . 6 𝐽 = (MetOpen‘𝐶)
21mopntopon 21992 . . . . 5 (𝐶 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
3 metcn.4 . . . . . 6 𝐾 = (MetOpen‘𝐷)
43mopntopon 21992 . . . . 5 (𝐷 ∈ (∞Met‘𝑌) → 𝐾 ∈ (TopOn‘𝑌))
5 txtopon 21143 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
62, 4, 5syl2an 492 . . . 4 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
763adant3 1073 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
8 txmetcnp.4 . . . . 5 𝐿 = (MetOpen‘𝐸)
98mopntopon 21992 . . . 4 (𝐸 ∈ (∞Met‘𝑍) → 𝐿 ∈ (TopOn‘𝑍))
1093ad2ant3 1076 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → 𝐿 ∈ (TopOn‘𝑍))
11 cncnp 20833 . . 3 (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐿 ∈ (TopOn‘𝑍)) → (𝐹 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑡 ∈ (𝑋 × 𝑌)𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘𝑡))))
127, 10, 11syl2anc 690 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → (𝐹 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑡 ∈ (𝑋 × 𝑌)𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘𝑡))))
13 fveq2 6085 . . . . . 6 (𝑡 = ⟨𝑥, 𝑦⟩ → (((𝐽 ×t 𝐾) CnP 𝐿)‘𝑡) = (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝑥, 𝑦⟩))
1413eleq2d 2669 . . . . 5 (𝑡 = ⟨𝑥, 𝑦⟩ → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘𝑡) ↔ 𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝑥, 𝑦⟩)))
1514ralxp 5170 . . . 4 (∀𝑡 ∈ (𝑋 × 𝑌)𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘𝑡) ↔ ∀𝑥𝑋𝑦𝑌 𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝑥, 𝑦⟩))
161, 3, 8txmetcnp 22100 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝑥𝑋𝑦𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝑥, 𝑦⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧))))
1716adantlr 746 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑥𝑋𝑦𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝑥, 𝑦⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧))))
18 simplr 787 . . . . . . 7 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑥𝑋𝑦𝑌)) → 𝐹:(𝑋 × 𝑌)⟶𝑍)
1918biantrurd 527 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑥𝑋𝑦𝑌)) → (∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧))))
2017, 19bitr4d 269 . . . . 5 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑥𝑋𝑦𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝑥, 𝑦⟩) ↔ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧)))
21202ralbidva 2967 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) → (∀𝑥𝑋𝑦𝑌 𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝑥, 𝑦⟩) ↔ ∀𝑥𝑋𝑦𝑌𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧)))
2215, 21syl5bb 270 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) → (∀𝑡 ∈ (𝑋 × 𝑌)𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘𝑡) ↔ ∀𝑥𝑋𝑦𝑌𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧)))
2322pm5.32da 670 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → ((𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑡 ∈ (𝑋 × 𝑌)𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘𝑡)) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑥𝑋𝑦𝑌𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧))))
2412, 23bitrd 266 1 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → (𝐹 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑥𝑋𝑦𝑌𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  wral 2892  wrex 2893  cop 4127   class class class wbr 4574   × cxp 5023  wf 5783  cfv 5787  (class class class)co 6524   < clt 9927  +crp 11661  ∞Metcxmt 19495  MetOpencmopn 19500  TopOnctopon 20457   Cn ccn 20777   CnP ccnp 20778   ×t ctx 21112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-rep 4690  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-inf2 8395  ax-cnex 9845  ax-resscn 9846  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-mulcom 9853  ax-addass 9854  ax-mulass 9855  ax-distr 9856  ax-i2m1 9857  ax-1ne0 9858  ax-1rid 9859  ax-rnegex 9860  ax-rrecex 9861  ax-cnre 9862  ax-pre-lttri 9863  ax-pre-lttrn 9864  ax-pre-ltadd 9865  ax-pre-mulgt0 9866  ax-pre-sup 9867
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-reu 2899  df-rmo 2900  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-int 4402  df-iun 4448  df-iin 4449  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-se 4985  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-isom 5796  df-riota 6486  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-of 6769  df-om 6932  df-1st 7033  df-2nd 7034  df-supp 7157  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-1o 7421  df-2o 7422  df-oadd 7425  df-er 7603  df-map 7720  df-ixp 7769  df-en 7816  df-dom 7817  df-sdom 7818  df-fin 7819  df-fsupp 8133  df-fi 8174  df-sup 8205  df-inf 8206  df-oi 8272  df-card 8622  df-cda 8847  df-pnf 9929  df-mnf 9930  df-xr 9931  df-ltxr 9932  df-le 9933  df-sub 10116  df-neg 10117  df-div 10531  df-nn 10865  df-2 10923  df-3 10924  df-4 10925  df-5 10926  df-6 10927  df-7 10928  df-8 10929  df-9 10930  df-n0 11137  df-z 11208  df-dec 11323  df-uz 11517  df-q 11618  df-rp 11662  df-xneg 11775  df-xadd 11776  df-xmul 11777  df-icc 12006  df-fz 12150  df-fzo 12287  df-seq 12616  df-hash 12932  df-struct 15640  df-ndx 15641  df-slot 15642  df-base 15643  df-sets 15644  df-ress 15645  df-plusg 15724  df-mulr 15725  df-sca 15727  df-vsca 15728  df-ip 15729  df-tset 15730  df-ple 15731  df-ds 15734  df-hom 15736  df-cco 15737  df-rest 15849  df-topn 15850  df-0g 15868  df-gsum 15869  df-topgen 15870  df-pt 15871  df-prds 15874  df-xrs 15928  df-qtop 15933  df-imas 15934  df-xps 15936  df-mre 16012  df-mrc 16013  df-acs 16015  df-mgm 17008  df-sgrp 17050  df-mnd 17061  df-submnd 17102  df-mulg 17307  df-cntz 17516  df-cmn 17961  df-psmet 19502  df-xmet 19503  df-bl 19505  df-mopn 19506  df-top 20460  df-bases 20461  df-topon 20462  df-topsp 20463  df-cn 20780  df-cnp 20781  df-tx 21114  df-hmeo 21307  df-xms 21873  df-tms 21875
This theorem is referenced by:  ngptgp  22185  nlmvscn  22231  xmetdcn2  22377  addcnlem  22403  ipcn  22768  vacn  26731  smcnlem  26734
  Copyright terms: Public domain W3C validator