Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0rppwr Structured version   Visualization version   GIF version

Theorem nn0rppwr 39257
Description: If 𝐴 and 𝐵 are relatively prime, then so are 𝐴𝑁 and 𝐵𝑁. rppwr 15904 extended to nonnegative integers. (Contributed by Steven Nguyen, 4-Apr-2023.)
Assertion
Ref Expression
nn0rppwr ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1))

Proof of Theorem nn0rppwr
StepHypRef Expression
1 elnn0 11897 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 elnn0 11897 . . . . 5 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
3 elnn0 11897 . . . . 5 (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℕ ∨ 𝐵 = 0))
4 rppwr 15904 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1))
543expia 1116 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)))
6 simp1l 1192 . . . . . . . . . . 11 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝐴 = 0)
76oveq1d 7168 . . . . . . . . . 10 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴𝑁) = (0↑𝑁))
8 0exp 13462 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (0↑𝑁) = 0)
983ad2ant2 1129 . . . . . . . . . 10 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (0↑𝑁) = 0)
107, 9eqtrd 2855 . . . . . . . . 9 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴𝑁) = 0)
116oveq1d 7168 . . . . . . . . . . . 12 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴 gcd 𝐵) = (0 gcd 𝐵))
12 simp3 1133 . . . . . . . . . . . 12 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴 gcd 𝐵) = 1)
13 simp1r 1193 . . . . . . . . . . . . 13 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝐵 ∈ ℕ)
14 nnz 12002 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
15 gcd0id 15863 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℤ → (0 gcd 𝐵) = (abs‘𝐵))
1614, 15syl 17 . . . . . . . . . . . . . 14 (𝐵 ∈ ℕ → (0 gcd 𝐵) = (abs‘𝐵))
17 nnre 11642 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
18 0red 10641 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℕ → 0 ∈ ℝ)
19 nngt0 11666 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℕ → 0 < 𝐵)
2018, 17, 19ltled 10785 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℕ → 0 ≤ 𝐵)
2117, 20absidd 14778 . . . . . . . . . . . . . 14 (𝐵 ∈ ℕ → (abs‘𝐵) = 𝐵)
2216, 21eqtrd 2855 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ → (0 gcd 𝐵) = 𝐵)
2313, 22syl 17 . . . . . . . . . . . 12 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (0 gcd 𝐵) = 𝐵)
2411, 12, 233eqtr3rd 2864 . . . . . . . . . . 11 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝐵 = 1)
2524oveq1d 7168 . . . . . . . . . 10 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐵𝑁) = (1↑𝑁))
26 nnz 12002 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
27263ad2ant2 1129 . . . . . . . . . . 11 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝑁 ∈ ℤ)
28 1exp 13456 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (1↑𝑁) = 1)
2927, 28syl 17 . . . . . . . . . 10 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (1↑𝑁) = 1)
3025, 29eqtrd 2855 . . . . . . . . 9 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐵𝑁) = 1)
3110, 30oveq12d 7171 . . . . . . . 8 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑁) gcd (𝐵𝑁)) = (0 gcd 1))
32 1z 12010 . . . . . . . . . 10 1 ∈ ℤ
33 gcd0id 15863 . . . . . . . . . 10 (1 ∈ ℤ → (0 gcd 1) = (abs‘1))
3432, 33ax-mp 5 . . . . . . . . 9 (0 gcd 1) = (abs‘1)
35 abs1 14653 . . . . . . . . 9 (abs‘1) = 1
3634, 35eqtri 2843 . . . . . . . 8 (0 gcd 1) = 1
3731, 36syl6eq 2871 . . . . . . 7 (((𝐴 = 0 ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)
38373exp 1114 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)))
39 simp1r 1193 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝐵 = 0)
4039oveq2d 7169 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴 gcd 𝐵) = (𝐴 gcd 0))
41 simp3 1133 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴 gcd 𝐵) = 1)
42 simp1l 1192 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝐴 ∈ ℕ)
4342nnnn0d 11953 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝐴 ∈ ℕ0)
44 nn0gcdid0 15865 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → (𝐴 gcd 0) = 𝐴)
4543, 44syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴 gcd 0) = 𝐴)
4640, 41, 453eqtr3rd 2864 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝐴 = 1)
4746oveq1d 7168 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴𝑁) = (1↑𝑁))
48263ad2ant2 1129 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → 𝑁 ∈ ℤ)
4948, 28syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (1↑𝑁) = 1)
5047, 49eqtrd 2855 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐴𝑁) = 1)
5139oveq1d 7168 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐵𝑁) = (0↑𝑁))
5283ad2ant2 1129 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (0↑𝑁) = 0)
5351, 52eqtrd 2855 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (𝐵𝑁) = 0)
5450, 53oveq12d 7171 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑁) gcd (𝐵𝑁)) = (1 gcd 0))
55 1nn0 11911 . . . . . . . . 9 1 ∈ ℕ0
56 nn0gcdid0 15865 . . . . . . . . 9 (1 ∈ ℕ0 → (1 gcd 0) = 1)
5755, 56mp1i 13 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (1 gcd 0) = 1)
5854, 57eqtrd 2855 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 = 0) ∧ 𝑁 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)
59583exp 1114 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 = 0) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)))
60 oveq12 7162 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 gcd 𝐵) = (0 gcd 0))
61 gcd0val 15842 . . . . . . . . . . . 12 (0 gcd 0) = 0
62 0ne1 11706 . . . . . . . . . . . 12 0 ≠ 1
6361, 62eqnetri 3085 . . . . . . . . . . 11 (0 gcd 0) ≠ 1
6463a1i 11 . . . . . . . . . 10 ((𝐴 = 0 ∧ 𝐵 = 0) → (0 gcd 0) ≠ 1)
6560, 64eqnetrd 3082 . . . . . . . . 9 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 gcd 𝐵) ≠ 1)
6665neneqd 3020 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 = 0) → ¬ (𝐴 gcd 𝐵) = 1)
6766pm2.21d 121 . . . . . . 7 ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1))
6867a1d 25 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)))
695, 38, 59, 68ccase 1032 . . . . 5 (((𝐴 ∈ ℕ ∨ 𝐴 = 0) ∧ (𝐵 ∈ ℕ ∨ 𝐵 = 0)) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)))
702, 3, 69syl2anb 599 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝑁 ∈ ℕ → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)))
71 oveq2 7161 . . . . . . . . . 10 (𝑁 = 0 → (𝐴𝑁) = (𝐴↑0))
72713ad2ant3 1130 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → (𝐴𝑁) = (𝐴↑0))
73 nn0cn 11905 . . . . . . . . . . 11 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
74733ad2ant1 1128 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → 𝐴 ∈ ℂ)
7574exp0d 13502 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → (𝐴↑0) = 1)
7672, 75eqtrd 2855 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → (𝐴𝑁) = 1)
77 oveq2 7161 . . . . . . . . . 10 (𝑁 = 0 → (𝐵𝑁) = (𝐵↑0))
78773ad2ant3 1130 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → (𝐵𝑁) = (𝐵↑0))
79 nn0cn 11905 . . . . . . . . . . 11 (𝐵 ∈ ℕ0𝐵 ∈ ℂ)
80793ad2ant2 1129 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → 𝐵 ∈ ℂ)
8180exp0d 13502 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → (𝐵↑0) = 1)
8278, 81eqtrd 2855 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → (𝐵𝑁) = 1)
8376, 82oveq12d 7171 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → ((𝐴𝑁) gcd (𝐵𝑁)) = (1 gcd 1))
84 1gcd 15877 . . . . . . . 8 (1 ∈ ℤ → (1 gcd 1) = 1)
8532, 84mp1i 13 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → (1 gcd 1) = 1)
8683, 85eqtrd 2855 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 = 0) → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)
87863expia 1116 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝑁 = 0 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1))
8887a1dd 50 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝑁 = 0 → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)))
8970, 88jaod 855 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1)))
90893impia 1112 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0 ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1))
911, 90syl3an3b 1400 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵) = 1 → ((𝐴𝑁) gcd (𝐵𝑁)) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843  w3a 1082   = wceq 1536  wcel 2113  wne 3015  cfv 6352  (class class class)co 7153  cc 10532  0cc0 10534  1c1 10535  cn 11635  0cn0 11895  cz 11979  cexp 13427  abscabs 14589   gcd cgcd 15839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5327  ax-un 7458  ax-cnex 10590  ax-resscn 10591  ax-1cn 10592  ax-icn 10593  ax-addcl 10594  ax-addrcl 10595  ax-mulcl 10596  ax-mulrcl 10597  ax-mulcom 10598  ax-addass 10599  ax-mulass 10600  ax-distr 10601  ax-i2m1 10602  ax-1ne0 10603  ax-1rid 10604  ax-rnegex 10605  ax-rrecex 10606  ax-cnre 10607  ax-pre-lttri 10608  ax-pre-lttrn 10609  ax-pre-ltadd 10610  ax-pre-mulgt0 10611  ax-pre-sup 10612
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3495  df-sbc 3771  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4465  df-pw 4538  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4836  df-iun 4918  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5457  df-eprel 5462  df-po 5471  df-so 5472  df-fr 5511  df-we 5513  df-xp 5558  df-rel 5559  df-cnv 5560  df-co 5561  df-dm 5562  df-rn 5563  df-res 5564  df-ima 5565  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7111  df-ov 7156  df-oprab 7157  df-mpo 7158  df-om 7578  df-2nd 7687  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-er 8286  df-en 8507  df-dom 8508  df-sdom 8509  df-sup 8903  df-inf 8904  df-pnf 10674  df-mnf 10675  df-xr 10676  df-ltxr 10677  df-le 10678  df-sub 10869  df-neg 10870  df-div 11295  df-nn 11636  df-2 11698  df-3 11699  df-n0 11896  df-z 11980  df-uz 12242  df-rp 12388  df-fl 13160  df-mod 13236  df-seq 13368  df-exp 13428  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-dvds 15604  df-gcd 15840
This theorem is referenced by:  expgcd  39258
  Copyright terms: Public domain W3C validator