HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem7 Structured version   Visualization version   GIF version

Theorem normlem7 28891
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 11-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem1.1 𝑆 ∈ ℂ
normlem1.2 𝐹 ∈ ℋ
normlem1.3 𝐺 ∈ ℋ
normlem7.4 (abs‘𝑆) = 1
Assertion
Ref Expression
normlem7 (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹))))

Proof of Theorem normlem7
StepHypRef Expression
1 normlem1.1 . . . . . 6 𝑆 ∈ ℂ
2 normlem1.2 . . . . . 6 𝐹 ∈ ℋ
3 normlem1.3 . . . . . 6 𝐺 ∈ ℋ
4 eqid 2820 . . . . . 6 -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))
51, 2, 3, 4normlem2 28886 . . . . 5 -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ
61cjcli 14523 . . . . . . . 8 (∗‘𝑆) ∈ ℂ
72, 3hicli 28856 . . . . . . . 8 (𝐹 ·ih 𝐺) ∈ ℂ
86, 7mulcli 10641 . . . . . . 7 ((∗‘𝑆) · (𝐹 ·ih 𝐺)) ∈ ℂ
93, 2hicli 28856 . . . . . . . 8 (𝐺 ·ih 𝐹) ∈ ℂ
101, 9mulcli 10641 . . . . . . 7 (𝑆 · (𝐺 ·ih 𝐹)) ∈ ℂ
118, 10addcli 10640 . . . . . 6 (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℂ
1211negrebi 10953 . . . . 5 (-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ ↔ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ)
135, 12mpbi 232 . . . 4 (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ
1413leabsi 14734 . . 3 (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (abs‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))))
1511absnegi 14755 . . 3 (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) = (abs‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))))
1614, 15breqtrri 5086 . 2 (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))))
17 eqid 2820 . . 3 (𝐺 ·ih 𝐺) = (𝐺 ·ih 𝐺)
18 eqid 2820 . . 3 (𝐹 ·ih 𝐹) = (𝐹 ·ih 𝐹)
19 normlem7.4 . . 3 (abs‘𝑆) = 1
201, 2, 3, 4, 17, 18, 19normlem6 28890 . 2 (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹))))
2111negcli 10947 . . . 4 -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℂ
2221abscli 14750 . . 3 (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) ∈ ℝ
23 2re 11705 . . . 4 2 ∈ ℝ
24 hiidge0 28873 . . . . . 6 (𝐺 ∈ ℋ → 0 ≤ (𝐺 ·ih 𝐺))
25 hiidrcl 28870 . . . . . . . 8 (𝐺 ∈ ℋ → (𝐺 ·ih 𝐺) ∈ ℝ)
263, 25ax-mp 5 . . . . . . 7 (𝐺 ·ih 𝐺) ∈ ℝ
2726sqrtcli 14726 . . . . . 6 (0 ≤ (𝐺 ·ih 𝐺) → (√‘(𝐺 ·ih 𝐺)) ∈ ℝ)
283, 24, 27mp2b 10 . . . . 5 (√‘(𝐺 ·ih 𝐺)) ∈ ℝ
29 hiidge0 28873 . . . . . 6 (𝐹 ∈ ℋ → 0 ≤ (𝐹 ·ih 𝐹))
30 hiidrcl 28870 . . . . . . . 8 (𝐹 ∈ ℋ → (𝐹 ·ih 𝐹) ∈ ℝ)
312, 30ax-mp 5 . . . . . . 7 (𝐹 ·ih 𝐹) ∈ ℝ
3231sqrtcli 14726 . . . . . 6 (0 ≤ (𝐹 ·ih 𝐹) → (√‘(𝐹 ·ih 𝐹)) ∈ ℝ)
332, 29, 32mp2b 10 . . . . 5 (√‘(𝐹 ·ih 𝐹)) ∈ ℝ
3428, 33remulcli 10650 . . . 4 ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹))) ∈ ℝ
3523, 34remulcli 10650 . . 3 (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹)))) ∈ ℝ
3613, 22, 35letri 10762 . 2 (((((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) ∧ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹))))) → (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹)))))
3716, 20, 36mp2an 690 1 (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹))))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1536  wcel 2113   class class class wbr 5059  cfv 6348  (class class class)co 7149  cc 10528  cr 10529  0cc0 10530  1c1 10531   + caddc 10533   · cmul 10535  cle 10669  -cneg 10864  2c2 11686  ccj 14450  csqrt 14587  abscabs 14588  chba 28694   ·ih csp 28697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-hfvadd 28775  ax-hv0cl 28778  ax-hfvmul 28780  ax-hvmulass 28782  ax-hvmul0 28785  ax-hfi 28854  ax-his1 28857  ax-his2 28858  ax-his3 28859  ax-his4 28860
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-er 8282  df-en 8503  df-dom 8504  df-sdom 8505  df-sup 8899  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11632  df-2 11694  df-3 11695  df-4 11696  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-seq 13367  df-exp 13427  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-hvsub 28746
This theorem is referenced by:  normlem7tALT  28894  norm-ii-i  28912
  Copyright terms: Public domain W3C validator