Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  numdenneg Structured version   Visualization version   GIF version

Theorem numdenneg 28746
Description: Numerator and denominator of the negative. (Contributed by Thierry Arnoux, 27-Oct-2017.)
Assertion
Ref Expression
numdenneg (𝑄 ∈ ℚ → ((numer‘-𝑄) = -(numer‘𝑄) ∧ (denom‘-𝑄) = (denom‘𝑄)))

Proof of Theorem numdenneg
StepHypRef Expression
1 qnegcl 11546 . 2 (𝑄 ∈ ℚ → -𝑄 ∈ ℚ)
2 qnumcl 15160 . . 3 (𝑄 ∈ ℚ → (numer‘𝑄) ∈ ℤ)
32znegcld 11223 . 2 (𝑄 ∈ ℚ → -(numer‘𝑄) ∈ ℤ)
4 qdencl 15161 . 2 (𝑄 ∈ ℚ → (denom‘𝑄) ∈ ℕ)
54nnzd 11220 . . . 4 (𝑄 ∈ ℚ → (denom‘𝑄) ∈ ℤ)
6 neggcd 14953 . . . 4 (((numer‘𝑄) ∈ ℤ ∧ (denom‘𝑄) ∈ ℤ) → (-(numer‘𝑄) gcd (denom‘𝑄)) = ((numer‘𝑄) gcd (denom‘𝑄)))
72, 5, 6syl2anc 690 . . 3 (𝑄 ∈ ℚ → (-(numer‘𝑄) gcd (denom‘𝑄)) = ((numer‘𝑄) gcd (denom‘𝑄)))
8 qnumdencoprm 15165 . . 3 (𝑄 ∈ ℚ → ((numer‘𝑄) gcd (denom‘𝑄)) = 1)
97, 8eqtrd 2548 . 2 (𝑄 ∈ ℚ → (-(numer‘𝑄) gcd (denom‘𝑄)) = 1)
10 qeqnumdivden 15166 . . . 4 (𝑄 ∈ ℚ → 𝑄 = ((numer‘𝑄) / (denom‘𝑄)))
1110negeqd 10025 . . 3 (𝑄 ∈ ℚ → -𝑄 = -((numer‘𝑄) / (denom‘𝑄)))
122zcnd 11222 . . . 4 (𝑄 ∈ ℚ → (numer‘𝑄) ∈ ℂ)
134nncnd 10790 . . . 4 (𝑄 ∈ ℚ → (denom‘𝑄) ∈ ℂ)
144nnne0d 10819 . . . 4 (𝑄 ∈ ℚ → (denom‘𝑄) ≠ 0)
1512, 13, 14divnegd 10562 . . 3 (𝑄 ∈ ℚ → -((numer‘𝑄) / (denom‘𝑄)) = (-(numer‘𝑄) / (denom‘𝑄)))
1611, 15eqtrd 2548 . 2 (𝑄 ∈ ℚ → -𝑄 = (-(numer‘𝑄) / (denom‘𝑄)))
17 qnumdenbi 15164 . . 3 ((-𝑄 ∈ ℚ ∧ -(numer‘𝑄) ∈ ℤ ∧ (denom‘𝑄) ∈ ℕ) → (((-(numer‘𝑄) gcd (denom‘𝑄)) = 1 ∧ -𝑄 = (-(numer‘𝑄) / (denom‘𝑄))) ↔ ((numer‘-𝑄) = -(numer‘𝑄) ∧ (denom‘-𝑄) = (denom‘𝑄))))
1817biimpa 499 . 2 (((-𝑄 ∈ ℚ ∧ -(numer‘𝑄) ∈ ℤ ∧ (denom‘𝑄) ∈ ℕ) ∧ ((-(numer‘𝑄) gcd (denom‘𝑄)) = 1 ∧ -𝑄 = (-(numer‘𝑄) / (denom‘𝑄)))) → ((numer‘-𝑄) = -(numer‘𝑄) ∧ (denom‘-𝑄) = (denom‘𝑄)))
191, 3, 4, 9, 16, 18syl32anc 1325 1 (𝑄 ∈ ℚ → ((numer‘-𝑄) = -(numer‘𝑄) ∧ (denom‘-𝑄) = (denom‘𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1938  cfv 5689  (class class class)co 6425  1c1 9691  -cneg 10017   / cdiv 10432  cn 10774  cz 11117  cq 11529   gcd cgcd 14925  numercnumer 15153  denomcdenom 15154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6722  ax-cnex 9746  ax-resscn 9747  ax-1cn 9748  ax-icn 9749  ax-addcl 9750  ax-addrcl 9751  ax-mulcl 9752  ax-mulrcl 9753  ax-mulcom 9754  ax-addass 9755  ax-mulass 9756  ax-distr 9757  ax-i2m1 9758  ax-1ne0 9759  ax-1rid 9760  ax-rnegex 9761  ax-rrecex 9762  ax-cnre 9763  ax-pre-lttri 9764  ax-pre-lttrn 9765  ax-pre-ltadd 9766  ax-pre-mulgt0 9767  ax-pre-sup 9768
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-reu 2807  df-rmo 2808  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-riota 6387  df-ov 6428  df-oprab 6429  df-mpt2 6430  df-om 6833  df-1st 6933  df-2nd 6934  df-wrecs 7168  df-recs 7230  df-rdg 7268  df-er 7504  df-en 7717  df-dom 7718  df-sdom 7719  df-sup 8106  df-inf 8107  df-pnf 9830  df-mnf 9831  df-xr 9832  df-ltxr 9833  df-le 9834  df-sub 10018  df-neg 10019  df-div 10433  df-nn 10775  df-2 10833  df-3 10834  df-n0 11047  df-z 11118  df-uz 11427  df-q 11530  df-rp 11574  df-fl 12322  df-mod 12398  df-seq 12531  df-exp 12590  df-cj 13544  df-re 13545  df-im 13546  df-sqrt 13680  df-abs 13681  df-dvds 14689  df-gcd 14926  df-numer 15155  df-denom 15156
This theorem is referenced by:  divnumden2  28747
  Copyright terms: Public domain W3C validator