MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odmulgeq Structured version   Visualization version   GIF version

Theorem odmulgeq 17890
Description: A multiple of a point of finite order only has the same order if the multiplier is relatively prime. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
odmulgid.1 𝑋 = (Base‘𝐺)
odmulgid.2 𝑂 = (od‘𝐺)
odmulgid.3 · = (.g𝐺)
Assertion
Ref Expression
odmulgeq (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂‘(𝑁 · 𝐴)) = (𝑂𝐴) ↔ (𝑁 gcd (𝑂𝐴)) = 1))

Proof of Theorem odmulgeq
StepHypRef Expression
1 eqcom 2633 . 2 ((𝑂‘(𝑁 · 𝐴)) = (𝑂𝐴) ↔ (𝑂𝐴) = (𝑂‘(𝑁 · 𝐴)))
2 simpl2 1063 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → 𝐴𝑋)
3 odmulgid.1 . . . . . . 7 𝑋 = (Base‘𝐺)
4 odmulgid.2 . . . . . . 7 𝑂 = (od‘𝐺)
53, 4odcl 17871 . . . . . 6 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
62, 5syl 17 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℕ0)
76nn0cnd 11298 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℂ)
8 simpl1 1062 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → 𝐺 ∈ Grp)
9 simpl3 1064 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → 𝑁 ∈ ℤ)
10 odmulgid.3 . . . . . . . 8 · = (.g𝐺)
113, 10mulgcl 17475 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝐴𝑋) → (𝑁 · 𝐴) ∈ 𝑋)
128, 9, 2, 11syl3anc 1323 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 · 𝐴) ∈ 𝑋)
133, 4odcl 17871 . . . . . 6 ((𝑁 · 𝐴) ∈ 𝑋 → (𝑂‘(𝑁 · 𝐴)) ∈ ℕ0)
1412, 13syl 17 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂‘(𝑁 · 𝐴)) ∈ ℕ0)
1514nn0cnd 11298 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂‘(𝑁 · 𝐴)) ∈ ℂ)
16 nnne0 10998 . . . . . 6 ((𝑂𝐴) ∈ ℕ → (𝑂𝐴) ≠ 0)
1716adantl 482 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ≠ 0)
183, 4, 10odmulg2 17888 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂‘(𝑁 · 𝐴)) ∥ (𝑂𝐴))
1918adantr 481 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂‘(𝑁 · 𝐴)) ∥ (𝑂𝐴))
20 breq1 4621 . . . . . . . 8 ((𝑂‘(𝑁 · 𝐴)) = 0 → ((𝑂‘(𝑁 · 𝐴)) ∥ (𝑂𝐴) ↔ 0 ∥ (𝑂𝐴)))
2119, 20syl5ibcom 235 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂‘(𝑁 · 𝐴)) = 0 → 0 ∥ (𝑂𝐴)))
226nn0zd 11424 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℤ)
23 0dvds 14921 . . . . . . . 8 ((𝑂𝐴) ∈ ℤ → (0 ∥ (𝑂𝐴) ↔ (𝑂𝐴) = 0))
2422, 23syl 17 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (0 ∥ (𝑂𝐴) ↔ (𝑂𝐴) = 0))
2521, 24sylibd 229 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂‘(𝑁 · 𝐴)) = 0 → (𝑂𝐴) = 0))
2625necon3d 2817 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) ≠ 0 → (𝑂‘(𝑁 · 𝐴)) ≠ 0))
2717, 26mpd 15 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂‘(𝑁 · 𝐴)) ≠ 0)
287, 15, 27diveq1ad 10755 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑂𝐴) / (𝑂‘(𝑁 · 𝐴))) = 1 ↔ (𝑂𝐴) = (𝑂‘(𝑁 · 𝐴))))
299, 22gcdcld 15149 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 gcd (𝑂𝐴)) ∈ ℕ0)
3029nn0cnd 11298 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑁 gcd (𝑂𝐴)) ∈ ℂ)
3115, 30mulcomd 10006 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂‘(𝑁 · 𝐴)) · (𝑁 gcd (𝑂𝐴))) = ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))))
323, 4, 10odmulg 17889 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑂𝐴) = ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))))
3332adantr 481 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) = ((𝑁 gcd (𝑂𝐴)) · (𝑂‘(𝑁 · 𝐴))))
3431, 33eqtr4d 2663 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂‘(𝑁 · 𝐴)) · (𝑁 gcd (𝑂𝐴))) = (𝑂𝐴))
357, 15, 30, 27divmuld 10768 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑂𝐴) / (𝑂‘(𝑁 · 𝐴))) = (𝑁 gcd (𝑂𝐴)) ↔ ((𝑂‘(𝑁 · 𝐴)) · (𝑁 gcd (𝑂𝐴))) = (𝑂𝐴)))
3634, 35mpbird 247 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) / (𝑂‘(𝑁 · 𝐴))) = (𝑁 gcd (𝑂𝐴)))
3736eqeq1d 2628 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → (((𝑂𝐴) / (𝑂‘(𝑁 · 𝐴))) = 1 ↔ (𝑁 gcd (𝑂𝐴)) = 1))
3828, 37bitr3d 270 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) = (𝑂‘(𝑁 · 𝐴)) ↔ (𝑁 gcd (𝑂𝐴)) = 1))
391, 38syl5bb 272 1 (((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂‘(𝑁 · 𝐴)) = (𝑂𝐴) ↔ (𝑁 gcd (𝑂𝐴)) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1992  wne 2796   class class class wbr 4618  cfv 5850  (class class class)co 6605  0cc0 9881  1c1 9882   · cmul 9886   / cdiv 10629  cn 10965  0cn0 11237  cz 11322  cdvds 14902   gcd cgcd 15135  Basecbs 15776  Grpcgrp 17338  .gcmg 17456  odcod 17860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-inf2 8483  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-sup 8293  df-inf 8294  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-n0 11238  df-z 11323  df-uz 11632  df-rp 11777  df-fz 12266  df-fl 12530  df-mod 12606  df-seq 12739  df-exp 12798  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-dvds 14903  df-gcd 15136  df-0g 16018  df-mgm 17158  df-sgrp 17200  df-mnd 17211  df-grp 17341  df-minusg 17342  df-sbg 17343  df-mulg 17457  df-od 17864
This theorem is referenced by:  odngen  17908
  Copyright terms: Public domain W3C validator