MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1lpir Structured version   Visualization version   GIF version

Theorem ply1lpir 23876
Description: The ring of polynomials over a division ring has the principal ideal property. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypothesis
Ref Expression
ply1lpir.p 𝑃 = (Poly1𝑅)
Assertion
Ref Expression
ply1lpir (𝑅 ∈ DivRing → 𝑃 ∈ LPIR)

Proof of Theorem ply1lpir
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 drngring 18694 . . 3 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
2 ply1lpir.p . . . 4 𝑃 = (Poly1𝑅)
32ply1ring 19558 . . 3 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
41, 3syl 17 . 2 (𝑅 ∈ DivRing → 𝑃 ∈ Ring)
5 eqid 2621 . . . . . . . . 9 (Base‘𝑃) = (Base‘𝑃)
6 eqid 2621 . . . . . . . . 9 (LIdeal‘𝑃) = (LIdeal‘𝑃)
75, 6lidlss 19150 . . . . . . . 8 (𝑖 ∈ (LIdeal‘𝑃) → 𝑖 ⊆ (Base‘𝑃))
87adantl 482 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝑖 ∈ (LIdeal‘𝑃)) → 𝑖 ⊆ (Base‘𝑃))
9 eqid 2621 . . . . . . . 8 (idlGen1p𝑅) = (idlGen1p𝑅)
102, 9, 6ig1pcl 23873 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝑖 ∈ (LIdeal‘𝑃)) → ((idlGen1p𝑅)‘𝑖) ∈ 𝑖)
118, 10sseldd 3589 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝑖 ∈ (LIdeal‘𝑃)) → ((idlGen1p𝑅)‘𝑖) ∈ (Base‘𝑃))
12 eqid 2621 . . . . . . 7 (RSpan‘𝑃) = (RSpan‘𝑃)
132, 9, 6, 12ig1prsp 23875 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝑖 ∈ (LIdeal‘𝑃)) → 𝑖 = ((RSpan‘𝑃)‘{((idlGen1p𝑅)‘𝑖)}))
14 sneq 4165 . . . . . . . . 9 (𝑗 = ((idlGen1p𝑅)‘𝑖) → {𝑗} = {((idlGen1p𝑅)‘𝑖)})
1514fveq2d 6162 . . . . . . . 8 (𝑗 = ((idlGen1p𝑅)‘𝑖) → ((RSpan‘𝑃)‘{𝑗}) = ((RSpan‘𝑃)‘{((idlGen1p𝑅)‘𝑖)}))
1615eqeq2d 2631 . . . . . . 7 (𝑗 = ((idlGen1p𝑅)‘𝑖) → (𝑖 = ((RSpan‘𝑃)‘{𝑗}) ↔ 𝑖 = ((RSpan‘𝑃)‘{((idlGen1p𝑅)‘𝑖)})))
1716rspcev 3299 . . . . . 6 ((((idlGen1p𝑅)‘𝑖) ∈ (Base‘𝑃) ∧ 𝑖 = ((RSpan‘𝑃)‘{((idlGen1p𝑅)‘𝑖)})) → ∃𝑗 ∈ (Base‘𝑃)𝑖 = ((RSpan‘𝑃)‘{𝑗}))
1811, 13, 17syl2anc 692 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑖 ∈ (LIdeal‘𝑃)) → ∃𝑗 ∈ (Base‘𝑃)𝑖 = ((RSpan‘𝑃)‘{𝑗}))
194adantr 481 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝑖 ∈ (LIdeal‘𝑃)) → 𝑃 ∈ Ring)
20 eqid 2621 . . . . . . 7 (LPIdeal‘𝑃) = (LPIdeal‘𝑃)
2120, 12, 5islpidl 19186 . . . . . 6 (𝑃 ∈ Ring → (𝑖 ∈ (LPIdeal‘𝑃) ↔ ∃𝑗 ∈ (Base‘𝑃)𝑖 = ((RSpan‘𝑃)‘{𝑗})))
2219, 21syl 17 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑖 ∈ (LIdeal‘𝑃)) → (𝑖 ∈ (LPIdeal‘𝑃) ↔ ∃𝑗 ∈ (Base‘𝑃)𝑖 = ((RSpan‘𝑃)‘{𝑗})))
2318, 22mpbird 247 . . . 4 ((𝑅 ∈ DivRing ∧ 𝑖 ∈ (LIdeal‘𝑃)) → 𝑖 ∈ (LPIdeal‘𝑃))
2423ex 450 . . 3 (𝑅 ∈ DivRing → (𝑖 ∈ (LIdeal‘𝑃) → 𝑖 ∈ (LPIdeal‘𝑃)))
2524ssrdv 3594 . 2 (𝑅 ∈ DivRing → (LIdeal‘𝑃) ⊆ (LPIdeal‘𝑃))
2620, 6islpir2 19191 . 2 (𝑃 ∈ LPIR ↔ (𝑃 ∈ Ring ∧ (LIdeal‘𝑃) ⊆ (LPIdeal‘𝑃)))
274, 25, 26sylanbrc 697 1 (𝑅 ∈ DivRing → 𝑃 ∈ LPIR)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wrex 2909  wss 3560  {csn 4155  cfv 5857  Basecbs 15800  Ringcrg 18487  DivRingcdr 18687  LIdealclidl 19110  RSpancrsp 19111  LPIdealclpidl 19181  LPIRclpir 19182  Poly1cpl1 19487  idlGen1pcig1p 23827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974  ax-addf 9975  ax-mulf 9976
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-iin 4495  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-of 6862  df-ofr 6863  df-om 7028  df-1st 7128  df-2nd 7129  df-supp 7256  df-tpos 7312  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-er 7702  df-map 7819  df-pm 7820  df-ixp 7869  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-fsupp 8236  df-sup 8308  df-inf 8309  df-oi 8375  df-card 8725  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-z 11338  df-dec 11454  df-uz 11648  df-fz 12285  df-fzo 12423  df-seq 12758  df-hash 13074  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-plusg 15894  df-mulr 15895  df-starv 15896  df-sca 15897  df-vsca 15898  df-ip 15899  df-tset 15900  df-ple 15901  df-ds 15904  df-unif 15905  df-0g 16042  df-gsum 16043  df-mre 16186  df-mrc 16187  df-acs 16189  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-mhm 17275  df-submnd 17276  df-grp 17365  df-minusg 17366  df-sbg 17367  df-mulg 17481  df-subg 17531  df-ghm 17598  df-cntz 17690  df-cmn 18135  df-abl 18136  df-mgp 18430  df-ur 18442  df-ring 18489  df-cring 18490  df-oppr 18563  df-dvdsr 18581  df-unit 18582  df-invr 18612  df-drng 18689  df-subrg 18718  df-lmod 18805  df-lss 18873  df-lsp 18912  df-sra 19112  df-rgmod 19113  df-lidl 19114  df-rsp 19115  df-lpidl 19183  df-lpir 19184  df-rlreg 19223  df-ascl 19254  df-psr 19296  df-mvr 19297  df-mpl 19298  df-opsr 19300  df-psr1 19490  df-vr1 19491  df-ply1 19492  df-coe1 19493  df-cnfld 19687  df-mdeg 23753  df-deg1 23754  df-mon1 23828  df-uc1p 23829  df-q1p 23830  df-r1p 23831  df-ig1p 23832
This theorem is referenced by:  ply1pid  23877
  Copyright terms: Public domain W3C validator