MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyeq0 Structured version   Visualization version   GIF version

Theorem plyeq0 23716
Description: If a polynomial is zero at every point (or even just zero at the positive integers), then all the coefficients must be zero. This is the basis for the method of equating coefficients of equal polynomials, and ensures that df-coe 23695 is well-defined. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypotheses
Ref Expression
plyeq0.1 (𝜑𝑆 ⊆ ℂ)
plyeq0.2 (𝜑𝑁 ∈ ℕ0)
plyeq0.3 (𝜑𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚0))
plyeq0.4 (𝜑 → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
plyeq0.5 (𝜑 → 0𝑝 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
Assertion
Ref Expression
plyeq0 (𝜑𝐴 = (ℕ0 × {0}))
Distinct variable groups:   𝑧,𝑘,𝐴   𝑘,𝑁,𝑧   𝜑,𝑘,𝑧   𝑆,𝑘,𝑧

Proof of Theorem plyeq0
StepHypRef Expression
1 plyeq0.3 . . . . 5 (𝜑𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚0))
2 plyeq0.1 . . . . . . . 8 (𝜑𝑆 ⊆ ℂ)
3 0cnd 9890 . . . . . . . . 9 (𝜑 → 0 ∈ ℂ)
43snssd 4280 . . . . . . . 8 (𝜑 → {0} ⊆ ℂ)
52, 4unssd 3750 . . . . . . 7 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
6 cnex 9874 . . . . . . 7 ℂ ∈ V
7 ssexg 4727 . . . . . . 7 (((𝑆 ∪ {0}) ⊆ ℂ ∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V)
85, 6, 7sylancl 692 . . . . . 6 (𝜑 → (𝑆 ∪ {0}) ∈ V)
9 nn0ex 11148 . . . . . 6 0 ∈ V
10 elmapg 7735 . . . . . 6 (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0})))
118, 9, 10sylancl 692 . . . . 5 (𝜑 → (𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0})))
121, 11mpbid 220 . . . 4 (𝜑𝐴:ℕ0⟶(𝑆 ∪ {0}))
13 ffn 5944 . . . 4 (𝐴:ℕ0⟶(𝑆 ∪ {0}) → 𝐴 Fn ℕ0)
1412, 13syl 17 . . 3 (𝜑𝐴 Fn ℕ0)
15 imadmrn 5382 . . . 4 (𝐴 “ dom 𝐴) = ran 𝐴
16 fdm 5950 . . . . . . . . 9 (𝐴:ℕ0⟶(𝑆 ∪ {0}) → dom 𝐴 = ℕ0)
17 fimacnv 6240 . . . . . . . . 9 (𝐴:ℕ0⟶(𝑆 ∪ {0}) → (𝐴 “ (𝑆 ∪ {0})) = ℕ0)
1816, 17eqtr4d 2646 . . . . . . . 8 (𝐴:ℕ0⟶(𝑆 ∪ {0}) → dom 𝐴 = (𝐴 “ (𝑆 ∪ {0})))
1912, 18syl 17 . . . . . . 7 (𝜑 → dom 𝐴 = (𝐴 “ (𝑆 ∪ {0})))
20 simpr 475 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) = ∅) → (𝐴 “ (𝑆 ∖ {0})) = ∅)
212adantr 479 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → 𝑆 ⊆ ℂ)
22 plyeq0.2 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℕ0)
2322adantr 479 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → 𝑁 ∈ ℕ0)
241adantr 479 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → 𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚0))
25 plyeq0.4 . . . . . . . . . . . . 13 (𝜑 → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
2625adantr 479 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
27 plyeq0.5 . . . . . . . . . . . . 13 (𝜑 → 0𝑝 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
2827adantr 479 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → 0𝑝 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
29 eqid 2609 . . . . . . . . . . . 12 sup((𝐴 “ (𝑆 ∖ {0})), ℝ, < ) = sup((𝐴 “ (𝑆 ∖ {0})), ℝ, < )
30 simpr 475 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → (𝐴 “ (𝑆 ∖ {0})) ≠ ∅)
3121, 23, 24, 26, 28, 29, 30plyeq0lem 23715 . . . . . . . . . . 11 ¬ (𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅)
3231pm2.21i 114 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → (𝐴 “ (𝑆 ∖ {0})) = ∅)
3320, 32pm2.61dane 2868 . . . . . . . . 9 (𝜑 → (𝐴 “ (𝑆 ∖ {0})) = ∅)
3433uneq1d 3727 . . . . . . . 8 (𝜑 → ((𝐴 “ (𝑆 ∖ {0})) ∪ (𝐴 “ {0})) = (∅ ∪ (𝐴 “ {0})))
35 undif1 3994 . . . . . . . . . 10 ((𝑆 ∖ {0}) ∪ {0}) = (𝑆 ∪ {0})
3635imaeq2i 5370 . . . . . . . . 9 (𝐴 “ ((𝑆 ∖ {0}) ∪ {0})) = (𝐴 “ (𝑆 ∪ {0}))
37 imaundi 5450 . . . . . . . . 9 (𝐴 “ ((𝑆 ∖ {0}) ∪ {0})) = ((𝐴 “ (𝑆 ∖ {0})) ∪ (𝐴 “ {0}))
3836, 37eqtr3i 2633 . . . . . . . 8 (𝐴 “ (𝑆 ∪ {0})) = ((𝐴 “ (𝑆 ∖ {0})) ∪ (𝐴 “ {0}))
39 un0 3918 . . . . . . . . 9 ((𝐴 “ {0}) ∪ ∅) = (𝐴 “ {0})
40 uncom 3718 . . . . . . . . 9 ((𝐴 “ {0}) ∪ ∅) = (∅ ∪ (𝐴 “ {0}))
4139, 40eqtr3i 2633 . . . . . . . 8 (𝐴 “ {0}) = (∅ ∪ (𝐴 “ {0}))
4234, 38, 413eqtr4g 2668 . . . . . . 7 (𝜑 → (𝐴 “ (𝑆 ∪ {0})) = (𝐴 “ {0}))
4319, 42eqtrd 2643 . . . . . 6 (𝜑 → dom 𝐴 = (𝐴 “ {0}))
44 eqimss 3619 . . . . . 6 (dom 𝐴 = (𝐴 “ {0}) → dom 𝐴 ⊆ (𝐴 “ {0}))
4543, 44syl 17 . . . . 5 (𝜑 → dom 𝐴 ⊆ (𝐴 “ {0}))
46 ffun 5947 . . . . . . 7 (𝐴:ℕ0⟶(𝑆 ∪ {0}) → Fun 𝐴)
4712, 46syl 17 . . . . . 6 (𝜑 → Fun 𝐴)
48 ssid 3586 . . . . . 6 dom 𝐴 ⊆ dom 𝐴
49 funimass3 6226 . . . . . 6 ((Fun 𝐴 ∧ dom 𝐴 ⊆ dom 𝐴) → ((𝐴 “ dom 𝐴) ⊆ {0} ↔ dom 𝐴 ⊆ (𝐴 “ {0})))
5047, 48, 49sylancl 692 . . . . 5 (𝜑 → ((𝐴 “ dom 𝐴) ⊆ {0} ↔ dom 𝐴 ⊆ (𝐴 “ {0})))
5145, 50mpbird 245 . . . 4 (𝜑 → (𝐴 “ dom 𝐴) ⊆ {0})
5215, 51syl5eqssr 3612 . . 3 (𝜑 → ran 𝐴 ⊆ {0})
53 df-f 5794 . . 3 (𝐴:ℕ0⟶{0} ↔ (𝐴 Fn ℕ0 ∧ ran 𝐴 ⊆ {0}))
5414, 52, 53sylanbrc 694 . 2 (𝜑𝐴:ℕ0⟶{0})
55 c0ex 9891 . . 3 0 ∈ V
5655fconst2 6353 . 2 (𝐴:ℕ0⟶{0} ↔ 𝐴 = (ℕ0 × {0}))
5754, 56sylib 206 1 (𝜑𝐴 = (ℕ0 × {0}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wne 2779  Vcvv 3172  cdif 3536  cun 3537  wss 3539  c0 3873  {csn 4124  cmpt 4637   × cxp 5026  ccnv 5027  dom cdm 5028  ran crn 5029  cima 5031  Fun wfun 5784   Fn wfn 5785  wf 5786  cfv 5790  (class class class)co 6527  𝑚 cmap 7722  supcsup 8207  cc 9791  cr 9792  0cc0 9793  1c1 9794   + caddc 9796   · cmul 9798   < clt 9931  0cn0 11142  cuz 11522  ...cfz 12155  cexp 12680  Σcsu 14213  0𝑝c0p 23187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-inf2 8399  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870  ax-pre-sup 9871  ax-addf 9872
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-1st 7037  df-2nd 7038  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-oadd 7429  df-er 7607  df-map 7724  df-pm 7725  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-sup 8209  df-inf 8210  df-oi 8276  df-card 8626  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-nn 10871  df-2 10929  df-3 10930  df-n0 11143  df-z 11214  df-uz 11523  df-rp 11668  df-fz 12156  df-fzo 12293  df-fl 12413  df-seq 12622  df-exp 12681  df-hash 12938  df-cj 13636  df-re 13637  df-im 13638  df-sqrt 13772  df-abs 13773  df-clim 14016  df-rlim 14017  df-sum 14214  df-0p 23188
This theorem is referenced by:  coeeulem  23729
  Copyright terms: Public domain W3C validator