Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyeq0 Structured version   Visualization version   GIF version

Theorem plyeq0 24186
 Description: If a polynomial is zero at every point (or even just zero at the positive integers), then all the coefficients must be zero. This is the basis for the method of equating coefficients of equal polynomials, and ensures that df-coe 24165 is well-defined. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypotheses
Ref Expression
plyeq0.1 (𝜑𝑆 ⊆ ℂ)
plyeq0.2 (𝜑𝑁 ∈ ℕ0)
plyeq0.3 (𝜑𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚0))
plyeq0.4 (𝜑 → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
plyeq0.5 (𝜑 → 0𝑝 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
Assertion
Ref Expression
plyeq0 (𝜑𝐴 = (ℕ0 × {0}))
Distinct variable groups:   𝑧,𝑘,𝐴   𝑘,𝑁,𝑧   𝜑,𝑘,𝑧   𝑆,𝑘,𝑧

Proof of Theorem plyeq0
StepHypRef Expression
1 plyeq0.3 . . . . 5 (𝜑𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚0))
2 plyeq0.1 . . . . . . . 8 (𝜑𝑆 ⊆ ℂ)
3 0cnd 10245 . . . . . . . . 9 (𝜑 → 0 ∈ ℂ)
43snssd 4485 . . . . . . . 8 (𝜑 → {0} ⊆ ℂ)
52, 4unssd 3932 . . . . . . 7 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
6 cnex 10229 . . . . . . 7 ℂ ∈ V
7 ssexg 4956 . . . . . . 7 (((𝑆 ∪ {0}) ⊆ ℂ ∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V)
85, 6, 7sylancl 697 . . . . . 6 (𝜑 → (𝑆 ∪ {0}) ∈ V)
9 nn0ex 11510 . . . . . 6 0 ∈ V
10 elmapg 8038 . . . . . 6 (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0})))
118, 9, 10sylancl 697 . . . . 5 (𝜑 → (𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0})))
121, 11mpbid 222 . . . 4 (𝜑𝐴:ℕ0⟶(𝑆 ∪ {0}))
13 ffn 6206 . . . 4 (𝐴:ℕ0⟶(𝑆 ∪ {0}) → 𝐴 Fn ℕ0)
1412, 13syl 17 . . 3 (𝜑𝐴 Fn ℕ0)
15 imadmrn 5634 . . . 4 (𝐴 “ dom 𝐴) = ran 𝐴
16 fdm 6212 . . . . . . . . 9 (𝐴:ℕ0⟶(𝑆 ∪ {0}) → dom 𝐴 = ℕ0)
17 fimacnv 6511 . . . . . . . . 9 (𝐴:ℕ0⟶(𝑆 ∪ {0}) → (𝐴 “ (𝑆 ∪ {0})) = ℕ0)
1816, 17eqtr4d 2797 . . . . . . . 8 (𝐴:ℕ0⟶(𝑆 ∪ {0}) → dom 𝐴 = (𝐴 “ (𝑆 ∪ {0})))
1912, 18syl 17 . . . . . . 7 (𝜑 → dom 𝐴 = (𝐴 “ (𝑆 ∪ {0})))
20 simpr 479 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) = ∅) → (𝐴 “ (𝑆 ∖ {0})) = ∅)
212adantr 472 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → 𝑆 ⊆ ℂ)
22 plyeq0.2 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℕ0)
2322adantr 472 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → 𝑁 ∈ ℕ0)
241adantr 472 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → 𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚0))
25 plyeq0.4 . . . . . . . . . . . . 13 (𝜑 → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
2625adantr 472 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
27 plyeq0.5 . . . . . . . . . . . . 13 (𝜑 → 0𝑝 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
2827adantr 472 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → 0𝑝 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
29 eqid 2760 . . . . . . . . . . . 12 sup((𝐴 “ (𝑆 ∖ {0})), ℝ, < ) = sup((𝐴 “ (𝑆 ∖ {0})), ℝ, < )
30 simpr 479 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → (𝐴 “ (𝑆 ∖ {0})) ≠ ∅)
3121, 23, 24, 26, 28, 29, 30plyeq0lem 24185 . . . . . . . . . . 11 ¬ (𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅)
3231pm2.21i 116 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → (𝐴 “ (𝑆 ∖ {0})) = ∅)
3320, 32pm2.61dane 3019 . . . . . . . . 9 (𝜑 → (𝐴 “ (𝑆 ∖ {0})) = ∅)
3433uneq1d 3909 . . . . . . . 8 (𝜑 → ((𝐴 “ (𝑆 ∖ {0})) ∪ (𝐴 “ {0})) = (∅ ∪ (𝐴 “ {0})))
35 undif1 4187 . . . . . . . . . 10 ((𝑆 ∖ {0}) ∪ {0}) = (𝑆 ∪ {0})
3635imaeq2i 5622 . . . . . . . . 9 (𝐴 “ ((𝑆 ∖ {0}) ∪ {0})) = (𝐴 “ (𝑆 ∪ {0}))
37 imaundi 5703 . . . . . . . . 9 (𝐴 “ ((𝑆 ∖ {0}) ∪ {0})) = ((𝐴 “ (𝑆 ∖ {0})) ∪ (𝐴 “ {0}))
3836, 37eqtr3i 2784 . . . . . . . 8 (𝐴 “ (𝑆 ∪ {0})) = ((𝐴 “ (𝑆 ∖ {0})) ∪ (𝐴 “ {0}))
39 un0 4110 . . . . . . . . 9 ((𝐴 “ {0}) ∪ ∅) = (𝐴 “ {0})
40 uncom 3900 . . . . . . . . 9 ((𝐴 “ {0}) ∪ ∅) = (∅ ∪ (𝐴 “ {0}))
4139, 40eqtr3i 2784 . . . . . . . 8 (𝐴 “ {0}) = (∅ ∪ (𝐴 “ {0}))
4234, 38, 413eqtr4g 2819 . . . . . . 7 (𝜑 → (𝐴 “ (𝑆 ∪ {0})) = (𝐴 “ {0}))
4319, 42eqtrd 2794 . . . . . 6 (𝜑 → dom 𝐴 = (𝐴 “ {0}))
44 eqimss 3798 . . . . . 6 (dom 𝐴 = (𝐴 “ {0}) → dom 𝐴 ⊆ (𝐴 “ {0}))
4543, 44syl 17 . . . . 5 (𝜑 → dom 𝐴 ⊆ (𝐴 “ {0}))
46 ffun 6209 . . . . . . 7 (𝐴:ℕ0⟶(𝑆 ∪ {0}) → Fun 𝐴)
4712, 46syl 17 . . . . . 6 (𝜑 → Fun 𝐴)
48 ssid 3765 . . . . . 6 dom 𝐴 ⊆ dom 𝐴
49 funimass3 6497 . . . . . 6 ((Fun 𝐴 ∧ dom 𝐴 ⊆ dom 𝐴) → ((𝐴 “ dom 𝐴) ⊆ {0} ↔ dom 𝐴 ⊆ (𝐴 “ {0})))
5047, 48, 49sylancl 697 . . . . 5 (𝜑 → ((𝐴 “ dom 𝐴) ⊆ {0} ↔ dom 𝐴 ⊆ (𝐴 “ {0})))
5145, 50mpbird 247 . . . 4 (𝜑 → (𝐴 “ dom 𝐴) ⊆ {0})
5215, 51syl5eqssr 3791 . . 3 (𝜑 → ran 𝐴 ⊆ {0})
53 df-f 6053 . . 3 (𝐴:ℕ0⟶{0} ↔ (𝐴 Fn ℕ0 ∧ ran 𝐴 ⊆ {0}))
5414, 52, 53sylanbrc 701 . 2 (𝜑𝐴:ℕ0⟶{0})
55 c0ex 10246 . . 3 0 ∈ V
5655fconst2 6635 . 2 (𝐴:ℕ0⟶{0} ↔ 𝐴 = (ℕ0 × {0}))
5754, 56sylib 208 1 (𝜑𝐴 = (ℕ0 × {0}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2139   ≠ wne 2932  Vcvv 3340   ∖ cdif 3712   ∪ cun 3713   ⊆ wss 3715  ∅c0 4058  {csn 4321   ↦ cmpt 4881   × cxp 5264  ◡ccnv 5265  dom cdm 5266  ran crn 5267   “ cima 5269  Fun wfun 6043   Fn wfn 6044  ⟶wf 6045  ‘cfv 6049  (class class class)co 6814   ↑𝑚 cmap 8025  supcsup 8513  ℂcc 10146  ℝcr 10147  0cc0 10148  1c1 10149   + caddc 10151   · cmul 10153   < clt 10286  ℕ0cn0 11504  ℤ≥cuz 11899  ...cfz 12539  ↑cexp 13074  Σcsu 14635  0𝑝c0p 23655 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-n0 11505  df-z 11590  df-uz 11900  df-rp 12046  df-fz 12540  df-fzo 12680  df-fl 12807  df-seq 13016  df-exp 13075  df-hash 13332  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-clim 14438  df-rlim 14439  df-sum 14636  df-0p 23656 This theorem is referenced by:  coeeulem  24199
 Copyright terms: Public domain W3C validator