Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polssatN Structured version   Visualization version   GIF version

Theorem polssatN 34012
Description: The polarity of a set of atoms is a set of atoms. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
polssat.a 𝐴 = (Atoms‘𝐾)
polssat.p = (⊥𝑃𝐾)
Assertion
Ref Expression
polssatN ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) ⊆ 𝐴)

Proof of Theorem polssatN
StepHypRef Expression
1 polssat.a . . 3 𝐴 = (Atoms‘𝐾)
2 eqid 2606 . . 3 (PSubSp‘𝐾) = (PSubSp‘𝐾)
3 polssat.p . . 3 = (⊥𝑃𝐾)
41, 2, 3polsubN 34011 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) ∈ (PSubSp‘𝐾))
51, 2psubssat 33858 . 2 ((𝐾 ∈ HL ∧ ( 𝑋) ∈ (PSubSp‘𝐾)) → ( 𝑋) ⊆ 𝐴)
64, 5syldan 485 1 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  wss 3536  cfv 5787  Atomscatm 33368  HLchlt 33455  PSubSpcpsubsp 33600  𝑃cpolN 34006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-rep 4690  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-riotaBAD 33057
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-reu 2899  df-rmo 2900  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-op 4128  df-uni 4364  df-iun 4448  df-iin 4449  df-br 4575  df-opab 4635  df-mpt 4636  df-id 4940  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-riota 6486  df-ov 6527  df-oprab 6528  df-undef 7260  df-preset 16694  df-poset 16712  df-lub 16740  df-glb 16741  df-join 16742  df-meet 16743  df-p1 16806  df-lat 16812  df-clat 16874  df-oposet 33281  df-ol 33283  df-oml 33284  df-ats 33372  df-atl 33403  df-cvlat 33427  df-hlat 33456  df-psubsp 33607  df-pmap 33608  df-polarityN 34007
This theorem is referenced by:  2polcon4bN  34022  polcon2N  34023  pclss2polN  34025  2pmaplubN  34030  paddunN  34031  ispsubcl2N  34051  poml5N  34058  osumcllem1N  34060  osumcllem2N  34061  osumcllem3N  34062  osumcllem9N  34068  osumcllem11N  34070  pexmidN  34073  pexmidlem2N  34075  pexmidlem3N  34076  pexmidlem7N  34080  pexmidlem8N  34081
  Copyright terms: Public domain W3C validator