MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  radcnvlt2 Structured version   Visualization version   GIF version

Theorem radcnvlt2 25007
Description: If 𝑋 is within the open disk of radius 𝑅 centered at zero, then the infinite series converges at 𝑋. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypotheses
Ref Expression
pser.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
radcnv.a (𝜑𝐴:ℕ0⟶ℂ)
radcnv.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
radcnvlt.x (𝜑𝑋 ∈ ℂ)
radcnvlt.a (𝜑 → (abs‘𝑋) < 𝑅)
Assertion
Ref Expression
radcnvlt2 (𝜑 → seq0( + , (𝐺𝑋)) ∈ dom ⇝ )
Distinct variable groups:   𝑥,𝑛,𝐴   𝐺,𝑟
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐴(𝑟)   𝑅(𝑥,𝑛,𝑟)   𝐺(𝑥,𝑛)   𝑋(𝑥,𝑛,𝑟)

Proof of Theorem radcnvlt2
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12281 . 2 0 = (ℤ‘0)
2 0zd 11994 . 2 (𝜑 → 0 ∈ ℤ)
3 pser.g . . . 4 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
4 radcnv.a . . . 4 (𝜑𝐴:ℕ0⟶ℂ)
5 radcnvlt.x . . . 4 (𝜑𝑋 ∈ ℂ)
63, 4, 5psergf 25000 . . 3 (𝜑 → (𝐺𝑋):ℕ0⟶ℂ)
7 fvco3 6760 . . 3 (((𝐺𝑋):ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → ((abs ∘ (𝐺𝑋))‘𝑘) = (abs‘((𝐺𝑋)‘𝑘)))
86, 7sylan 582 . 2 ((𝜑𝑘 ∈ ℕ0) → ((abs ∘ (𝐺𝑋))‘𝑘) = (abs‘((𝐺𝑋)‘𝑘)))
96ffvelrnda 6851 . 2 ((𝜑𝑘 ∈ ℕ0) → ((𝐺𝑋)‘𝑘) ∈ ℂ)
10 radcnv.r . . . 4 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
11 radcnvlt.a . . . 4 (𝜑 → (abs‘𝑋) < 𝑅)
12 id 22 . . . . . 6 (𝑚 = 𝑘𝑚 = 𝑘)
13 2fveq3 6675 . . . . . 6 (𝑚 = 𝑘 → (abs‘((𝐺𝑋)‘𝑚)) = (abs‘((𝐺𝑋)‘𝑘)))
1412, 13oveq12d 7174 . . . . 5 (𝑚 = 𝑘 → (𝑚 · (abs‘((𝐺𝑋)‘𝑚))) = (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
1514cbvmptv 5169 . . . 4 (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚)))) = (𝑘 ∈ ℕ0 ↦ (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
163, 4, 10, 5, 11, 15radcnvlt1 25006 . . 3 (𝜑 → (seq0( + , (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))) ∈ dom ⇝ ∧ seq0( + , (abs ∘ (𝐺𝑋))) ∈ dom ⇝ ))
1716simprd 498 . 2 (𝜑 → seq0( + , (abs ∘ (𝐺𝑋))) ∈ dom ⇝ )
181, 2, 8, 9, 17abscvgcvg 15174 1 (𝜑 → seq0( + , (𝐺𝑋)) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  {crab 3142   class class class wbr 5066  cmpt 5146  dom cdm 5555  ccom 5559  wf 6351  cfv 6355  (class class class)co 7156  supcsup 8904  cc 10535  cr 10536  0cc0 10537   + caddc 10540   · cmul 10542  *cxr 10674   < clt 10675  0cn0 11898  seqcseq 13370  cexp 13430  abscabs 14593  cli 14841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043
This theorem is referenced by:  pserulm  25010  pserdvlem2  25016  abelthlem3  25021  binomcxplemcvg  40706
  Copyright terms: Public domain W3C validator