MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  remullem Structured version   Visualization version   GIF version

Theorem remullem 14487
Description: Lemma for remul 14488, immul 14495, and cjmul 14501. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
remullem ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) ∧ (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) ∧ (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵))))

Proof of Theorem remullem
StepHypRef Expression
1 replim 14475 . . . . . 6 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
2 replim 14475 . . . . . 6 (𝐵 ∈ ℂ → 𝐵 = ((ℜ‘𝐵) + (i · (ℑ‘𝐵))))
31, 2oveqan12d 7175 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · ((ℜ‘𝐵) + (i · (ℑ‘𝐵)))))
4 recl 14469 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
54adantr 483 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐴) ∈ ℝ)
65recnd 10669 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐴) ∈ ℂ)
7 ax-icn 10596 . . . . . . . 8 i ∈ ℂ
8 imcl 14470 . . . . . . . . . 10 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
98adantr 483 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐴) ∈ ℝ)
109recnd 10669 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐴) ∈ ℂ)
11 mulcl 10621 . . . . . . . 8 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
127, 10, 11sylancr 589 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
136, 12addcld 10660 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) ∈ ℂ)
14 recl 14469 . . . . . . . 8 (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℝ)
1514adantl 484 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐵) ∈ ℝ)
1615recnd 10669 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐵) ∈ ℂ)
17 imcl 14470 . . . . . . . . 9 (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℝ)
1817adantl 484 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐵) ∈ ℝ)
1918recnd 10669 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐵) ∈ ℂ)
20 mulcl 10621 . . . . . . 7 ((i ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → (i · (ℑ‘𝐵)) ∈ ℂ)
217, 19, 20sylancr 589 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (ℑ‘𝐵)) ∈ ℂ)
2213, 16, 21adddid 10665 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · ((ℜ‘𝐵) + (i · (ℑ‘𝐵)))) = ((((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · (ℜ‘𝐵)) + (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · (i · (ℑ‘𝐵)))))
236, 12, 16adddird 10666 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · (ℜ‘𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (ℜ‘𝐵))))
246, 12, 21adddird 10666 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · (i · (ℑ‘𝐵))) = (((ℜ‘𝐴) · (i · (ℑ‘𝐵))) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))))
2523, 24oveq12d 7174 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · (ℜ‘𝐵)) + (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · (i · (ℑ‘𝐵)))) = ((((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (ℜ‘𝐵))) + (((ℜ‘𝐴) · (i · (ℑ‘𝐵))) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵))))))
265, 15remulcld 10671 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (ℜ‘𝐵)) ∈ ℝ)
2726recnd 10669 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (ℜ‘𝐵)) ∈ ℂ)
2812, 21mulcld 10661 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵))) ∈ ℂ)
2912, 16mulcld 10661 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) ∈ ℂ)
306, 21mulcld 10661 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (i · (ℑ‘𝐵))) ∈ ℂ)
3127, 28, 29, 30add42d 10869 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))) + (((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) + ((ℜ‘𝐴) · (i · (ℑ‘𝐵))))) = ((((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (ℜ‘𝐵))) + (((ℜ‘𝐴) · (i · (ℑ‘𝐵))) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵))))))
327a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → i ∈ ℂ)
3332, 10, 32, 19mul4d 10852 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵))) = ((i · i) · ((ℑ‘𝐴) · (ℑ‘𝐵))))
34 ixi 11269 . . . . . . . . . . . 12 (i · i) = -1
3534oveq1i 7166 . . . . . . . . . . 11 ((i · i) · ((ℑ‘𝐴) · (ℑ‘𝐵))) = (-1 · ((ℑ‘𝐴) · (ℑ‘𝐵)))
369, 18remulcld 10671 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) · (ℑ‘𝐵)) ∈ ℝ)
3736recnd 10669 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) · (ℑ‘𝐵)) ∈ ℂ)
3837mulm1d 11092 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-1 · ((ℑ‘𝐴) · (ℑ‘𝐵))) = -((ℑ‘𝐴) · (ℑ‘𝐵)))
3935, 38syl5eq 2868 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · i) · ((ℑ‘𝐴) · (ℑ‘𝐵))) = -((ℑ‘𝐴) · (ℑ‘𝐵)))
4033, 39eqtrd 2856 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵))) = -((ℑ‘𝐴) · (ℑ‘𝐵)))
4140oveq2d 7172 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + -((ℑ‘𝐴) · (ℑ‘𝐵))))
4227, 37negsubd 11003 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℜ‘𝐵)) + -((ℑ‘𝐴) · (ℑ‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))))
4341, 42eqtrd 2856 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))))
449, 15remulcld 10671 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) · (ℜ‘𝐵)) ∈ ℝ)
4544recnd 10669 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) · (ℜ‘𝐵)) ∈ ℂ)
46 mulcl 10621 . . . . . . . . . 10 ((i ∈ ℂ ∧ ((ℑ‘𝐴) · (ℜ‘𝐵)) ∈ ℂ) → (i · ((ℑ‘𝐴) · (ℜ‘𝐵))) ∈ ℂ)
477, 45, 46sylancr 589 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · ((ℑ‘𝐴) · (ℜ‘𝐵))) ∈ ℂ)
485, 18remulcld 10671 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (ℑ‘𝐵)) ∈ ℝ)
4948recnd 10669 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (ℑ‘𝐵)) ∈ ℂ)
50 mulcl 10621 . . . . . . . . . 10 ((i ∈ ℂ ∧ ((ℜ‘𝐴) · (ℑ‘𝐵)) ∈ ℂ) → (i · ((ℜ‘𝐴) · (ℑ‘𝐵))) ∈ ℂ)
517, 49, 50sylancr 589 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · ((ℜ‘𝐴) · (ℑ‘𝐵))) ∈ ℂ)
5247, 51addcomd 10842 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · ((ℑ‘𝐴) · (ℜ‘𝐵))) + (i · ((ℜ‘𝐴) · (ℑ‘𝐵)))) = ((i · ((ℜ‘𝐴) · (ℑ‘𝐵))) + (i · ((ℑ‘𝐴) · (ℜ‘𝐵)))))
5332, 10, 16mulassd 10664 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) = (i · ((ℑ‘𝐴) · (ℜ‘𝐵))))
546, 32, 19mul12d 10849 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (i · (ℑ‘𝐵))) = (i · ((ℜ‘𝐴) · (ℑ‘𝐵))))
5553, 54oveq12d 7174 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) + ((ℜ‘𝐴) · (i · (ℑ‘𝐵)))) = ((i · ((ℑ‘𝐴) · (ℜ‘𝐵))) + (i · ((ℜ‘𝐴) · (ℑ‘𝐵)))))
5632, 49, 45adddid 10665 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))) = ((i · ((ℜ‘𝐴) · (ℑ‘𝐵))) + (i · ((ℑ‘𝐴) · (ℜ‘𝐵)))))
5752, 55, 563eqtr4d 2866 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) + ((ℜ‘𝐴) · (i · (ℑ‘𝐵)))) = (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))))
5843, 57oveq12d 7174 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))) + (((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) + ((ℜ‘𝐴) · (i · (ℑ‘𝐵))))) = ((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))))
5925, 31, 583eqtr2d 2862 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · (ℜ‘𝐵)) + (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · (i · (ℑ‘𝐵)))) = ((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))))
603, 22, 593eqtrd 2860 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = ((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))))
6160fveq2d 6674 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (ℜ‘((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))))))
6226, 36resubcld 11068 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) ∈ ℝ)
6348, 44readdcld 10670 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) ∈ ℝ)
64 crre 14473 . . . 4 (((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) ∈ ℝ ∧ (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) ∈ ℝ) → (ℜ‘((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))))
6562, 63, 64syl2anc 586 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))))
6661, 65eqtrd 2856 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))))
6760fveq2d 6674 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 · 𝐵)) = (ℑ‘((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))))))
68 crim 14474 . . . 4 (((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) ∈ ℝ ∧ (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) ∈ ℝ) → (ℑ‘((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))))) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))
6962, 63, 68syl2anc 586 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))))) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))
7067, 69eqtrd 2856 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))
71 mulcl 10621 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
72 remim 14476 . . . 4 ((𝐴 · 𝐵) ∈ ℂ → (∗‘(𝐴 · 𝐵)) = ((ℜ‘(𝐴 · 𝐵)) − (i · (ℑ‘(𝐴 · 𝐵)))))
7371, 72syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 · 𝐵)) = ((ℜ‘(𝐴 · 𝐵)) − (i · (ℑ‘(𝐴 · 𝐵)))))
74 remim 14476 . . . . 5 (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
75 remim 14476 . . . . 5 (𝐵 ∈ ℂ → (∗‘𝐵) = ((ℜ‘𝐵) − (i · (ℑ‘𝐵))))
7674, 75oveqan12d 7175 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) · (∗‘𝐵)) = (((ℜ‘𝐴) − (i · (ℑ‘𝐴))) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))))
7716, 21subcld 10997 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐵) − (i · (ℑ‘𝐵))) ∈ ℂ)
786, 12, 77subdird 11097 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) − (i · (ℑ‘𝐴))) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))) = (((ℜ‘𝐴) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))) − ((i · (ℑ‘𝐴)) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵))))))
7927, 30, 29, 28subadd4d 11045 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℜ‘𝐴) · (i · (ℑ‘𝐵)))) − (((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) − ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵))))) = ((((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))) − (((ℜ‘𝐴) · (i · (ℑ‘𝐵))) + ((i · (ℑ‘𝐴)) · (ℜ‘𝐵)))))
806, 16, 21subdid 11096 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℜ‘𝐴) · (i · (ℑ‘𝐵)))))
8112, 16, 21subdid 11096 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (ℑ‘𝐴)) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))) = (((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) − ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))))
8280, 81oveq12d 7174 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))) − ((i · (ℑ‘𝐴)) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵))))) = ((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℜ‘𝐴) · (i · (ℑ‘𝐵)))) − (((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) − ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵))))))
8365, 61, 433eqtr4d 2866 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))))
8470oveq2d 7172 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (ℑ‘(𝐴 · 𝐵))) = (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))))
8554, 53oveq12d 7174 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (i · (ℑ‘𝐵))) + ((i · (ℑ‘𝐴)) · (ℜ‘𝐵))) = ((i · ((ℜ‘𝐴) · (ℑ‘𝐵))) + (i · ((ℑ‘𝐴) · (ℜ‘𝐵)))))
8656, 84, 853eqtr4d 2866 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (ℑ‘(𝐴 · 𝐵))) = (((ℜ‘𝐴) · (i · (ℑ‘𝐵))) + ((i · (ℑ‘𝐴)) · (ℜ‘𝐵))))
8783, 86oveq12d 7174 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘(𝐴 · 𝐵)) − (i · (ℑ‘(𝐴 · 𝐵)))) = ((((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))) − (((ℜ‘𝐴) · (i · (ℑ‘𝐵))) + ((i · (ℑ‘𝐴)) · (ℜ‘𝐵)))))
8879, 82, 873eqtr4d 2866 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))) − ((i · (ℑ‘𝐴)) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵))))) = ((ℜ‘(𝐴 · 𝐵)) − (i · (ℑ‘(𝐴 · 𝐵)))))
8976, 78, 883eqtrd 2860 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) · (∗‘𝐵)) = ((ℜ‘(𝐴 · 𝐵)) − (i · (ℑ‘(𝐴 · 𝐵)))))
9073, 89eqtr4d 2859 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵)))
9166, 70, 903jca 1124 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) ∧ (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) ∧ (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  1c1 10538  ici 10539   + caddc 10540   · cmul 10542  cmin 10870  -cneg 10871  ccj 14455  cre 14456  cim 14457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-2 11701  df-cj 14458  df-re 14459  df-im 14460
This theorem is referenced by:  remul  14488  immul  14495  cjmul  14501
  Copyright terms: Public domain W3C validator