MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resspsrvsca Structured version   Visualization version   GIF version

Theorem resspsrvsca 20198
Description: A restricted power series algebra has the same scalar multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
resspsr.s 𝑆 = (𝐼 mPwSer 𝑅)
resspsr.h 𝐻 = (𝑅s 𝑇)
resspsr.u 𝑈 = (𝐼 mPwSer 𝐻)
resspsr.b 𝐵 = (Base‘𝑈)
resspsr.p 𝑃 = (𝑆s 𝐵)
resspsr.2 (𝜑𝑇 ∈ (SubRing‘𝑅))
Assertion
Ref Expression
resspsrvsca ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠𝑈)𝑌) = (𝑋( ·𝑠𝑃)𝑌))

Proof of Theorem resspsrvsca
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 resspsr.u . . 3 𝑈 = (𝐼 mPwSer 𝐻)
2 eqid 2821 . . 3 ( ·𝑠𝑈) = ( ·𝑠𝑈)
3 eqid 2821 . . 3 (Base‘𝐻) = (Base‘𝐻)
4 resspsr.b . . 3 𝐵 = (Base‘𝑈)
5 eqid 2821 . . 3 (.r𝐻) = (.r𝐻)
6 eqid 2821 . . 3 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
7 simprl 769 . . . 4 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝑋𝑇)
8 resspsr.2 . . . . . 6 (𝜑𝑇 ∈ (SubRing‘𝑅))
98adantr 483 . . . . 5 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝑇 ∈ (SubRing‘𝑅))
10 resspsr.h . . . . . 6 𝐻 = (𝑅s 𝑇)
1110subrgbas 19544 . . . . 5 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻))
129, 11syl 17 . . . 4 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝑇 = (Base‘𝐻))
137, 12eleqtrd 2915 . . 3 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝑋 ∈ (Base‘𝐻))
14 simprr 771 . . 3 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝑌𝐵)
151, 2, 3, 4, 5, 6, 13, 14psrvsca 20171 . 2 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠𝑈)𝑌) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r𝐻)𝑌))
16 resspsr.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
17 eqid 2821 . . . 4 ( ·𝑠𝑆) = ( ·𝑠𝑆)
18 eqid 2821 . . . 4 (Base‘𝑅) = (Base‘𝑅)
19 eqid 2821 . . . 4 (Base‘𝑆) = (Base‘𝑆)
20 eqid 2821 . . . 4 (.r𝑅) = (.r𝑅)
2118subrgss 19536 . . . . . 6 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ⊆ (Base‘𝑅))
229, 21syl 17 . . . . 5 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝑇 ⊆ (Base‘𝑅))
2322, 7sseldd 3968 . . . 4 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝑋 ∈ (Base‘𝑅))
24 resspsr.p . . . . . . . 8 𝑃 = (𝑆s 𝐵)
2516, 10, 1, 4, 24, 8resspsrbas 20195 . . . . . . 7 (𝜑𝐵 = (Base‘𝑃))
2624, 19ressbasss 16556 . . . . . . 7 (Base‘𝑃) ⊆ (Base‘𝑆)
2725, 26eqsstrdi 4021 . . . . . 6 (𝜑𝐵 ⊆ (Base‘𝑆))
2827adantr 483 . . . . 5 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝐵 ⊆ (Base‘𝑆))
2928, 14sseldd 3968 . . . 4 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝑌 ∈ (Base‘𝑆))
3016, 17, 18, 19, 20, 6, 23, 29psrvsca 20171 . . 3 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠𝑆)𝑌) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r𝑅)𝑌))
3110, 20ressmulr 16625 . . . . 5 (𝑇 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝐻))
32 ofeq 7411 . . . . 5 ((.r𝑅) = (.r𝐻) → ∘f (.r𝑅) = ∘f (.r𝐻))
339, 31, 323syl 18 . . . 4 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → ∘f (.r𝑅) = ∘f (.r𝐻))
3433oveqd 7173 . . 3 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r𝑅)𝑌) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r𝐻)𝑌))
3530, 34eqtrd 2856 . 2 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠𝑆)𝑌) = (({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘f (.r𝐻)𝑌))
364fvexi 6684 . . . 4 𝐵 ∈ V
3724, 17ressvsca 16651 . . . 4 (𝐵 ∈ V → ( ·𝑠𝑆) = ( ·𝑠𝑃))
3836, 37mp1i 13 . . 3 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → ( ·𝑠𝑆) = ( ·𝑠𝑃))
3938oveqd 7173 . 2 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠𝑆)𝑌) = (𝑋( ·𝑠𝑃)𝑌))
4015, 35, 393eqtr2d 2862 1 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠𝑈)𝑌) = (𝑋( ·𝑠𝑃)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  {crab 3142  Vcvv 3494  wss 3936  {csn 4567   × cxp 5553  ccnv 5554  cima 5558  cfv 6355  (class class class)co 7156  f cof 7407  m cmap 8406  Fincfn 8509  cn 11638  0cn0 11898  Basecbs 16483  s cress 16484  .rcmulr 16566   ·𝑠 cvsca 16569  SubRingcsubrg 19531   mPwSer cmps 20131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-tset 16584  df-subg 18276  df-ring 19299  df-subrg 19533  df-psr 20136
This theorem is referenced by:  ressmplvsca  20240
  Copyright terms: Public domain W3C validator