MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resspsrvsca Structured version   Visualization version   GIF version

Theorem resspsrvsca 19187
Description: A restricted power series algebra has the same scalar multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
resspsr.s 𝑆 = (𝐼 mPwSer 𝑅)
resspsr.h 𝐻 = (𝑅s 𝑇)
resspsr.u 𝑈 = (𝐼 mPwSer 𝐻)
resspsr.b 𝐵 = (Base‘𝑈)
resspsr.p 𝑃 = (𝑆s 𝐵)
resspsr.2 (𝜑𝑇 ∈ (SubRing‘𝑅))
Assertion
Ref Expression
resspsrvsca ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠𝑈)𝑌) = (𝑋( ·𝑠𝑃)𝑌))

Proof of Theorem resspsrvsca
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 resspsr.u . . 3 𝑈 = (𝐼 mPwSer 𝐻)
2 eqid 2609 . . 3 ( ·𝑠𝑈) = ( ·𝑠𝑈)
3 eqid 2609 . . 3 (Base‘𝐻) = (Base‘𝐻)
4 resspsr.b . . 3 𝐵 = (Base‘𝑈)
5 eqid 2609 . . 3 (.r𝐻) = (.r𝐻)
6 eqid 2609 . . 3 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
7 simprl 789 . . . 4 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝑋𝑇)
8 resspsr.2 . . . . . 6 (𝜑𝑇 ∈ (SubRing‘𝑅))
98adantr 479 . . . . 5 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝑇 ∈ (SubRing‘𝑅))
10 resspsr.h . . . . . 6 𝐻 = (𝑅s 𝑇)
1110subrgbas 18560 . . . . 5 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻))
129, 11syl 17 . . . 4 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝑇 = (Base‘𝐻))
137, 12eleqtrd 2689 . . 3 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝑋 ∈ (Base‘𝐻))
14 simprr 791 . . 3 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝑌𝐵)
151, 2, 3, 4, 5, 6, 13, 14psrvsca 19160 . 2 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠𝑈)𝑌) = (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘𝑓 (.r𝐻)𝑌))
16 resspsr.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
17 eqid 2609 . . . 4 ( ·𝑠𝑆) = ( ·𝑠𝑆)
18 eqid 2609 . . . 4 (Base‘𝑅) = (Base‘𝑅)
19 eqid 2609 . . . 4 (Base‘𝑆) = (Base‘𝑆)
20 eqid 2609 . . . 4 (.r𝑅) = (.r𝑅)
2118subrgss 18552 . . . . . 6 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ⊆ (Base‘𝑅))
229, 21syl 17 . . . . 5 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝑇 ⊆ (Base‘𝑅))
2322, 7sseldd 3568 . . . 4 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝑋 ∈ (Base‘𝑅))
24 resspsr.p . . . . . . . 8 𝑃 = (𝑆s 𝐵)
2516, 10, 1, 4, 24, 8resspsrbas 19184 . . . . . . 7 (𝜑𝐵 = (Base‘𝑃))
2624, 19ressbasss 15707 . . . . . . 7 (Base‘𝑃) ⊆ (Base‘𝑆)
2725, 26syl6eqss 3617 . . . . . 6 (𝜑𝐵 ⊆ (Base‘𝑆))
2827adantr 479 . . . . 5 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝐵 ⊆ (Base‘𝑆))
2928, 14sseldd 3568 . . . 4 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → 𝑌 ∈ (Base‘𝑆))
3016, 17, 18, 19, 20, 6, 23, 29psrvsca 19160 . . 3 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠𝑆)𝑌) = (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘𝑓 (.r𝑅)𝑌))
3110, 20ressmulr 15777 . . . . 5 (𝑇 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝐻))
32 ofeq 6774 . . . . 5 ((.r𝑅) = (.r𝐻) → ∘𝑓 (.r𝑅) = ∘𝑓 (.r𝐻))
339, 31, 323syl 18 . . . 4 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → ∘𝑓 (.r𝑅) = ∘𝑓 (.r𝐻))
3433oveqd 6543 . . 3 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘𝑓 (.r𝑅)𝑌) = (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘𝑓 (.r𝐻)𝑌))
3530, 34eqtrd 2643 . 2 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠𝑆)𝑌) = (({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘𝑓 (.r𝐻)𝑌))
36 fvex 6097 . . . . 5 (Base‘𝑈) ∈ V
374, 36eqeltri 2683 . . . 4 𝐵 ∈ V
3824, 17ressvsca 15803 . . . 4 (𝐵 ∈ V → ( ·𝑠𝑆) = ( ·𝑠𝑃))
3937, 38mp1i 13 . . 3 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → ( ·𝑠𝑆) = ( ·𝑠𝑃))
4039oveqd 6543 . 2 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠𝑆)𝑌) = (𝑋( ·𝑠𝑃)𝑌))
4115, 35, 403eqtr2d 2649 1 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠𝑈)𝑌) = (𝑋( ·𝑠𝑃)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  {crab 2899  Vcvv 3172  wss 3539  {csn 4124   × cxp 5025  ccnv 5026  cima 5030  cfv 5789  (class class class)co 6526  𝑓 cof 6770  𝑚 cmap 7721  Fincfn 7818  cn 10869  0cn0 11141  Basecbs 15643  s cress 15644  .rcmulr 15717   ·𝑠 cvsca 15720  SubRingcsubrg 18547   mPwSer cmps 19120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10870  df-2 10928  df-3 10929  df-4 10930  df-5 10931  df-6 10932  df-7 10933  df-8 10934  df-9 10935  df-n0 11142  df-z 11213  df-uz 11522  df-fz 12155  df-struct 15645  df-ndx 15646  df-slot 15647  df-base 15648  df-sets 15649  df-ress 15650  df-plusg 15729  df-mulr 15730  df-sca 15732  df-vsca 15733  df-tset 15735  df-subg 17362  df-ring 18320  df-subrg 18549  df-psr 19125
This theorem is referenced by:  ressmplvsca  19228
  Copyright terms: Public domain W3C validator