MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimdiv Structured version   Visualization version   GIF version

Theorem rlimdiv 14305
Description: Limit of the quotient of two converging functions. Proposition 12-2.1(a) of [Gleason] p. 168. (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypotheses
Ref Expression
rlimadd.3 ((𝜑𝑥𝐴) → 𝐵𝑉)
rlimadd.4 ((𝜑𝑥𝐴) → 𝐶𝑉)
rlimadd.5 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐷)
rlimadd.6 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐸)
rlimdiv.7 (𝜑𝐸 ≠ 0)
rlimdiv.8 ((𝜑𝑥𝐴) → 𝐶 ≠ 0)
Assertion
Ref Expression
rlimdiv (𝜑 → (𝑥𝐴 ↦ (𝐵 / 𝐶)) ⇝𝑟 (𝐷 / 𝐸))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝜑,𝑥   𝑥,𝐸
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem rlimdiv
Dummy variables 𝑤 𝑣 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimadd.3 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝑉)
2 rlimadd.5 . . . 4 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐷)
31, 2rlimmptrcl 14267 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
4 rlimadd.4 . . . . 5 ((𝜑𝑥𝐴) → 𝐶𝑉)
5 rlimadd.6 . . . . 5 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐸)
64, 5rlimmptrcl 14267 . . . 4 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
7 rlimdiv.8 . . . 4 ((𝜑𝑥𝐴) → 𝐶 ≠ 0)
86, 7reccld 10739 . . 3 ((𝜑𝑥𝐴) → (1 / 𝐶) ∈ ℂ)
9 eldifsn 4292 . . . . . . 7 (𝐶 ∈ (ℂ ∖ {0}) ↔ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
106, 7, 9sylanbrc 697 . . . . . 6 ((𝜑𝑥𝐴) → 𝐶 ∈ (ℂ ∖ {0}))
11 eqid 2626 . . . . . 6 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
1210, 11fmptd 6341 . . . . 5 (𝜑 → (𝑥𝐴𝐶):𝐴⟶(ℂ ∖ {0}))
13 rlimcl 14163 . . . . . . 7 ((𝑥𝐴𝐶) ⇝𝑟 𝐸𝐸 ∈ ℂ)
145, 13syl 17 . . . . . 6 (𝜑𝐸 ∈ ℂ)
15 rlimdiv.7 . . . . . 6 (𝜑𝐸 ≠ 0)
16 eldifsn 4292 . . . . . 6 (𝐸 ∈ (ℂ ∖ {0}) ↔ (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0))
1714, 15, 16sylanbrc 697 . . . . 5 (𝜑𝐸 ∈ (ℂ ∖ {0}))
18 eldifsn 4292 . . . . . . . 8 (𝑦 ∈ (ℂ ∖ {0}) ↔ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
19 reccl 10637 . . . . . . . 8 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (1 / 𝑦) ∈ ℂ)
2018, 19sylbi 207 . . . . . . 7 (𝑦 ∈ (ℂ ∖ {0}) → (1 / 𝑦) ∈ ℂ)
2120adantl 482 . . . . . 6 ((𝜑𝑦 ∈ (ℂ ∖ {0})) → (1 / 𝑦) ∈ ℂ)
22 eqid 2626 . . . . . 6 (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) = (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))
2321, 22fmptd 6341 . . . . 5 (𝜑 → (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)):(ℂ ∖ {0})⟶ℂ)
24 eqid 2626 . . . . . . . 8 (if(1 ≤ ((abs‘𝐸) · 𝑧), 1, ((abs‘𝐸) · 𝑧)) · ((abs‘𝐸) / 2)) = (if(1 ≤ ((abs‘𝐸) · 𝑧), 1, ((abs‘𝐸) · 𝑧)) · ((abs‘𝐸) / 2))
2524reccn2 14256 . . . . . . 7 ((𝐸 ∈ (ℂ ∖ {0}) ∧ 𝑧 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘((1 / 𝑣) − (1 / 𝐸))) < 𝑧))
2617, 25sylan 488 . . . . . 6 ((𝜑𝑧 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘((1 / 𝑣) − (1 / 𝐸))) < 𝑧))
27 oveq2 6613 . . . . . . . . . . . . . 14 (𝑦 = 𝑣 → (1 / 𝑦) = (1 / 𝑣))
28 ovex 6633 . . . . . . . . . . . . . 14 (1 / 𝑣) ∈ V
2927, 22, 28fvmpt 6240 . . . . . . . . . . . . 13 (𝑣 ∈ (ℂ ∖ {0}) → ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) = (1 / 𝑣))
30 oveq2 6613 . . . . . . . . . . . . . . 15 (𝑦 = 𝐸 → (1 / 𝑦) = (1 / 𝐸))
31 ovex 6633 . . . . . . . . . . . . . . 15 (1 / 𝐸) ∈ V
3230, 22, 31fvmpt 6240 . . . . . . . . . . . . . 14 (𝐸 ∈ (ℂ ∖ {0}) → ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸) = (1 / 𝐸))
3317, 32syl 17 . . . . . . . . . . . . 13 (𝜑 → ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸) = (1 / 𝐸))
3429, 33oveqan12rd 6625 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (ℂ ∖ {0})) → (((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) − ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸)) = ((1 / 𝑣) − (1 / 𝐸)))
3534fveq2d 6154 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (ℂ ∖ {0})) → (abs‘(((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) − ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸))) = (abs‘((1 / 𝑣) − (1 / 𝐸))))
3635breq1d 4628 . . . . . . . . . 10 ((𝜑𝑣 ∈ (ℂ ∖ {0})) → ((abs‘(((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) − ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸))) < 𝑧 ↔ (abs‘((1 / 𝑣) − (1 / 𝐸))) < 𝑧))
3736imbi2d 330 . . . . . . . . 9 ((𝜑𝑣 ∈ (ℂ ∖ {0})) → (((abs‘(𝑣𝐸)) < 𝑤 → (abs‘(((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) − ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸))) < 𝑧) ↔ ((abs‘(𝑣𝐸)) < 𝑤 → (abs‘((1 / 𝑣) − (1 / 𝐸))) < 𝑧)))
3837ralbidva 2984 . . . . . . . 8 (𝜑 → (∀𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘(((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) − ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸))) < 𝑧) ↔ ∀𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘((1 / 𝑣) − (1 / 𝐸))) < 𝑧)))
3938rexbidv 3050 . . . . . . 7 (𝜑 → (∃𝑤 ∈ ℝ+𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘(((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) − ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸))) < 𝑧) ↔ ∃𝑤 ∈ ℝ+𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘((1 / 𝑣) − (1 / 𝐸))) < 𝑧)))
4039biimpar 502 . . . . . 6 ((𝜑 ∧ ∃𝑤 ∈ ℝ+𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘((1 / 𝑣) − (1 / 𝐸))) < 𝑧)) → ∃𝑤 ∈ ℝ+𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘(((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) − ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸))) < 𝑧))
4126, 40syldan 487 . . . . 5 ((𝜑𝑧 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘(((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) − ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸))) < 𝑧))
4212, 17, 5, 23, 41rlimcn1 14248 . . . 4 (𝜑 → ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∘ (𝑥𝐴𝐶)) ⇝𝑟 ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸))
43 eqidd 2627 . . . . 5 (𝜑 → (𝑥𝐴𝐶) = (𝑥𝐴𝐶))
44 eqidd 2627 . . . . 5 (𝜑 → (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) = (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)))
45 oveq2 6613 . . . . 5 (𝑦 = 𝐶 → (1 / 𝑦) = (1 / 𝐶))
4610, 43, 44, 45fmptco 6352 . . . 4 (𝜑 → ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∘ (𝑥𝐴𝐶)) = (𝑥𝐴 ↦ (1 / 𝐶)))
4742, 46, 333brtr3d 4649 . . 3 (𝜑 → (𝑥𝐴 ↦ (1 / 𝐶)) ⇝𝑟 (1 / 𝐸))
483, 8, 2, 47rlimmul 14304 . 2 (𝜑 → (𝑥𝐴 ↦ (𝐵 · (1 / 𝐶))) ⇝𝑟 (𝐷 · (1 / 𝐸)))
493, 6, 7divrecd 10749 . . 3 ((𝜑𝑥𝐴) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶)))
5049mpteq2dva 4709 . 2 (𝜑 → (𝑥𝐴 ↦ (𝐵 / 𝐶)) = (𝑥𝐴 ↦ (𝐵 · (1 / 𝐶))))
51 rlimcl 14163 . . . 4 ((𝑥𝐴𝐵) ⇝𝑟 𝐷𝐷 ∈ ℂ)
522, 51syl 17 . . 3 (𝜑𝐷 ∈ ℂ)
5352, 14, 15divrecd 10749 . 2 (𝜑 → (𝐷 / 𝐸) = (𝐷 · (1 / 𝐸)))
5448, 50, 533brtr4d 4650 1 (𝜑 → (𝑥𝐴 ↦ (𝐵 / 𝐶)) ⇝𝑟 (𝐷 / 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1992  wne 2796  wral 2912  wrex 2913  cdif 3557  ifcif 4063  {csn 4153   class class class wbr 4618  cmpt 4678  ccom 5083  cfv 5850  (class class class)co 6605  cc 9879  0cc0 9881  1c1 9882   · cmul 9886   < clt 10019  cle 10020  cmin 10211   / cdiv 10629  2c2 11015  +crp 11776  abscabs 13903  𝑟 crli 14145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959  ax-mulf 9961
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-pm 7806  df-en 7901  df-dom 7902  df-sdom 7903  df-sup 8293  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-n0 11238  df-z 11323  df-uz 11632  df-rp 11777  df-seq 12739  df-exp 12798  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-rlim 14149
This theorem is referenced by:  logexprlim  24845  chebbnd2  25061  chto1lb  25062  pnt2  25197  pnt  25198
  Copyright terms: Public domain W3C validator