Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2linesl Structured version   Visualization version   GIF version

Theorem rrx2linesl 44779
Description: The line passing through the two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2, expressed by the slope 𝑆 between the two points ("point-slope form"), sometimes also written as ((𝑝‘2) − (𝑋‘2)) = (𝑆 · ((𝑝‘1) − (𝑋‘1))). (Contributed by AV, 22-Jan-2023.)
Hypotheses
Ref Expression
rrx2line.i 𝐼 = {1, 2}
rrx2line.e 𝐸 = (ℝ^‘𝐼)
rrx2line.b 𝑃 = (ℝ ↑m 𝐼)
rrx2line.l 𝐿 = (LineM𝐸)
rrx2linesl.s 𝑆 = (((𝑌‘2) − (𝑋‘2)) / ((𝑌‘1) − (𝑋‘1)))
Assertion
Ref Expression
rrx2linesl ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘2) = ((𝑆 · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2))})
Distinct variable groups:   𝐸,𝑝   𝐼,𝑝   𝑃,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hints:   𝑆(𝑝)   𝐿(𝑝)

Proof of Theorem rrx2linesl
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6669 . . . 4 (𝑋 = 𝑌 → (𝑋‘1) = (𝑌‘1))
21necon3i 3048 . . 3 ((𝑋‘1) ≠ (𝑌‘1) → 𝑋𝑌)
3 rrx2line.i . . . 4 𝐼 = {1, 2}
4 rrx2line.e . . . 4 𝐸 = (ℝ^‘𝐼)
5 rrx2line.b . . . 4 𝑃 = (ℝ ↑m 𝐼)
6 rrx2line.l . . . 4 𝐿 = (LineM𝐸)
73, 4, 5, 6rrx2line 44776 . . 3 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
82, 7syl3an3 1161 . 2 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))})
9 reex 10628 . . . . . . . 8 ℝ ∈ V
10 prex 5333 . . . . . . . . 9 {1, 2} ∈ V
113, 10eqeltri 2909 . . . . . . . 8 𝐼 ∈ V
129, 11elmap 8435 . . . . . . 7 (𝑝 ∈ (ℝ ↑m 𝐼) ↔ 𝑝:𝐼⟶ℝ)
13 id 22 . . . . . . . 8 (𝑝:𝐼⟶ℝ → 𝑝:𝐼⟶ℝ)
14 1ex 10637 . . . . . . . . . . 11 1 ∈ V
1514prid1 4698 . . . . . . . . . 10 1 ∈ {1, 2}
1615, 3eleqtrri 2912 . . . . . . . . 9 1 ∈ 𝐼
1716a1i 11 . . . . . . . 8 (𝑝:𝐼⟶ℝ → 1 ∈ 𝐼)
1813, 17ffvelrnd 6852 . . . . . . 7 (𝑝:𝐼⟶ℝ → (𝑝‘1) ∈ ℝ)
1912, 18sylbi 219 . . . . . 6 (𝑝 ∈ (ℝ ↑m 𝐼) → (𝑝‘1) ∈ ℝ)
2019, 5eleq2s 2931 . . . . 5 (𝑝𝑃 → (𝑝‘1) ∈ ℝ)
2120adantl 484 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝𝑃) → (𝑝‘1) ∈ ℝ)
229, 11elmap 8435 . . . . . . . 8 (𝑋 ∈ (ℝ ↑m 𝐼) ↔ 𝑋:𝐼⟶ℝ)
23 id 22 . . . . . . . . 9 (𝑋:𝐼⟶ℝ → 𝑋:𝐼⟶ℝ)
2416a1i 11 . . . . . . . . 9 (𝑋:𝐼⟶ℝ → 1 ∈ 𝐼)
2523, 24ffvelrnd 6852 . . . . . . . 8 (𝑋:𝐼⟶ℝ → (𝑋‘1) ∈ ℝ)
2622, 25sylbi 219 . . . . . . 7 (𝑋 ∈ (ℝ ↑m 𝐼) → (𝑋‘1) ∈ ℝ)
2726, 5eleq2s 2931 . . . . . 6 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
28273ad2ant1 1129 . . . . 5 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋‘1) ∈ ℝ)
2928adantr 483 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝𝑃) → (𝑋‘1) ∈ ℝ)
309, 11elmap 8435 . . . . . . . 8 (𝑌 ∈ (ℝ ↑m 𝐼) ↔ 𝑌:𝐼⟶ℝ)
31 id 22 . . . . . . . . 9 (𝑌:𝐼⟶ℝ → 𝑌:𝐼⟶ℝ)
3216a1i 11 . . . . . . . . 9 (𝑌:𝐼⟶ℝ → 1 ∈ 𝐼)
3331, 32ffvelrnd 6852 . . . . . . . 8 (𝑌:𝐼⟶ℝ → (𝑌‘1) ∈ ℝ)
3430, 33sylbi 219 . . . . . . 7 (𝑌 ∈ (ℝ ↑m 𝐼) → (𝑌‘1) ∈ ℝ)
3534, 5eleq2s 2931 . . . . . 6 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
36353ad2ant2 1130 . . . . 5 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑌‘1) ∈ ℝ)
3736adantr 483 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝𝑃) → (𝑌‘1) ∈ ℝ)
38 simpl3 1189 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝𝑃) → (𝑋‘1) ≠ (𝑌‘1))
39 2ex 11715 . . . . . . . . . . 11 2 ∈ V
4039prid2 4699 . . . . . . . . . 10 2 ∈ {1, 2}
4140, 3eleqtrri 2912 . . . . . . . . 9 2 ∈ 𝐼
4241a1i 11 . . . . . . . 8 (𝑝:𝐼⟶ℝ → 2 ∈ 𝐼)
4313, 42ffvelrnd 6852 . . . . . . 7 (𝑝:𝐼⟶ℝ → (𝑝‘2) ∈ ℝ)
4412, 43sylbi 219 . . . . . 6 (𝑝 ∈ (ℝ ↑m 𝐼) → (𝑝‘2) ∈ ℝ)
4544, 5eleq2s 2931 . . . . 5 (𝑝𝑃 → (𝑝‘2) ∈ ℝ)
4645adantl 484 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝𝑃) → (𝑝‘2) ∈ ℝ)
4741a1i 11 . . . . . . . . 9 (𝑋:𝐼⟶ℝ → 2 ∈ 𝐼)
4823, 47ffvelrnd 6852 . . . . . . . 8 (𝑋:𝐼⟶ℝ → (𝑋‘2) ∈ ℝ)
4922, 48sylbi 219 . . . . . . 7 (𝑋 ∈ (ℝ ↑m 𝐼) → (𝑋‘2) ∈ ℝ)
5049, 5eleq2s 2931 . . . . . 6 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
51503ad2ant1 1129 . . . . 5 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋‘2) ∈ ℝ)
5251adantr 483 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝𝑃) → (𝑋‘2) ∈ ℝ)
535eleq2i 2904 . . . . . . . 8 (𝑌𝑃𝑌 ∈ (ℝ ↑m 𝐼))
5453, 30bitri 277 . . . . . . 7 (𝑌𝑃𝑌:𝐼⟶ℝ)
5541a1i 11 . . . . . . . 8 (𝑌:𝐼⟶ℝ → 2 ∈ 𝐼)
5631, 55ffvelrnd 6852 . . . . . . 7 (𝑌:𝐼⟶ℝ → (𝑌‘2) ∈ ℝ)
5754, 56sylbi 219 . . . . . 6 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
58573ad2ant2 1130 . . . . 5 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑌‘2) ∈ ℝ)
5958adantr 483 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝𝑃) → (𝑌‘2) ∈ ℝ)
60 rrx2linesl.s . . . 4 𝑆 = (((𝑌‘2) − (𝑋‘2)) / ((𝑌‘1) − (𝑋‘1)))
6121, 29, 37, 38, 46, 52, 59, 60affinecomb1 44738 . . 3 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) ∧ 𝑝𝑃) → (∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2)))) ↔ (𝑝‘2) = ((𝑆 · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2))))
6261rabbidva 3478 . 2 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ ((𝑝‘1) = (((1 − 𝑡) · (𝑋‘1)) + (𝑡 · (𝑌‘1))) ∧ (𝑝‘2) = (((1 − 𝑡) · (𝑋‘2)) + (𝑡 · (𝑌‘2))))} = {𝑝𝑃 ∣ (𝑝‘2) = ((𝑆 · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2))})
638, 62eqtrd 2856 1 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘1) ≠ (𝑌‘1)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘2) = ((𝑆 · ((𝑝‘1) − (𝑋‘1))) + (𝑋‘2))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wrex 3139  {crab 3142  Vcvv 3494  {cpr 4569  wf 6351  cfv 6355  (class class class)co 7156  m cmap 8406  cr 10536  1c1 10538   + caddc 10540   · cmul 10542  cmin 10870   / cdiv 11297  2c2 11693  ℝ^crrx 23986  LineMcline 44763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-rp 12391  df-fz 12894  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-0g 16715  df-prds 16721  df-pws 16723  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-grp 18106  df-minusg 18107  df-sbg 18108  df-subg 18276  df-ghm 18356  df-cmn 18908  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-dvr 19433  df-rnghom 19467  df-drng 19504  df-field 19505  df-subrg 19533  df-staf 19616  df-srng 19617  df-lmod 19636  df-lss 19704  df-sra 19944  df-rgmod 19945  df-cnfld 20546  df-refld 20749  df-dsmm 20876  df-frlm 20891  df-tng 23194  df-tcph 23773  df-rrx 23988  df-line 44765
This theorem is referenced by:  line2  44788
  Copyright terms: Public domain W3C validator