MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqf1olem2a Structured version   Visualization version   GIF version

Theorem seqf1olem2a 12779
Description: Lemma for seqf1o 12782. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
seqf1o.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seqf1o.2 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
seqf1o.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
seqf1o.4 (𝜑𝑁 ∈ (ℤ𝑀))
seqf1o.5 (𝜑𝐶𝑆)
seqf1olem2a.1 (𝜑𝐺:𝐴𝐶)
seqf1olem2a.3 (𝜑𝐾𝐴)
seqf1olem2a.4 (𝜑 → (𝑀...𝑁) ⊆ 𝐴)
Assertion
Ref Expression
seqf1olem2a (𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑁)) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺𝐾)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐺   𝑥,𝑀,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑥,𝑁,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)

Proof of Theorem seqf1olem2a
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqf1o.4 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 12291 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 17 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 fveq2 6148 . . . . . 6 (𝑚 = 𝑀 → (seq𝑀( + , 𝐺)‘𝑚) = (seq𝑀( + , 𝐺)‘𝑀))
54oveq2d 6620 . . . . 5 (𝑚 = 𝑀 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑀)))
64oveq1d 6619 . . . . 5 (𝑚 = 𝑀 → ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺𝐾)) = ((seq𝑀( + , 𝐺)‘𝑀) + (𝐺𝐾)))
75, 6eqeq12d 2636 . . . 4 (𝑚 = 𝑀 → (((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺𝐾)) ↔ ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑀)) = ((seq𝑀( + , 𝐺)‘𝑀) + (𝐺𝐾))))
87imbi2d 330 . . 3 (𝑚 = 𝑀 → ((𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺𝐾))) ↔ (𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑀)) = ((seq𝑀( + , 𝐺)‘𝑀) + (𝐺𝐾)))))
9 fveq2 6148 . . . . . 6 (𝑚 = 𝑛 → (seq𝑀( + , 𝐺)‘𝑚) = (seq𝑀( + , 𝐺)‘𝑛))
109oveq2d 6620 . . . . 5 (𝑚 = 𝑛 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑛)))
119oveq1d 6619 . . . . 5 (𝑚 = 𝑛 → ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺𝐾)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺𝐾)))
1210, 11eqeq12d 2636 . . . 4 (𝑚 = 𝑛 → (((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺𝐾)) ↔ ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺𝐾))))
1312imbi2d 330 . . 3 (𝑚 = 𝑛 → ((𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺𝐾))) ↔ (𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺𝐾)))))
14 fveq2 6148 . . . . . 6 (𝑚 = (𝑛 + 1) → (seq𝑀( + , 𝐺)‘𝑚) = (seq𝑀( + , 𝐺)‘(𝑛 + 1)))
1514oveq2d 6620 . . . . 5 (𝑚 = (𝑛 + 1) → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))))
1614oveq1d 6619 . . . . 5 (𝑚 = (𝑛 + 1) → ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺𝐾)) = ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺𝐾)))
1715, 16eqeq12d 2636 . . . 4 (𝑚 = (𝑛 + 1) → (((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺𝐾)) ↔ ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))) = ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺𝐾))))
1817imbi2d 330 . . 3 (𝑚 = (𝑛 + 1) → ((𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺𝐾))) ↔ (𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))) = ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺𝐾)))))
19 fveq2 6148 . . . . . 6 (𝑚 = 𝑁 → (seq𝑀( + , 𝐺)‘𝑚) = (seq𝑀( + , 𝐺)‘𝑁))
2019oveq2d 6620 . . . . 5 (𝑚 = 𝑁 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑁)))
2119oveq1d 6619 . . . . 5 (𝑚 = 𝑁 → ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺𝐾)) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺𝐾)))
2220, 21eqeq12d 2636 . . . 4 (𝑚 = 𝑁 → (((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺𝐾)) ↔ ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑁)) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺𝐾))))
2322imbi2d 330 . . 3 (𝑚 = 𝑁 → ((𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑚)) = ((seq𝑀( + , 𝐺)‘𝑚) + (𝐺𝐾))) ↔ (𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑁)) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺𝐾)))))
24 seqf1o.2 . . . . 5 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
25 seqf1olem2a.1 . . . . . 6 (𝜑𝐺:𝐴𝐶)
26 seqf1olem2a.3 . . . . . 6 (𝜑𝐾𝐴)
2725, 26ffvelrnd 6316 . . . . 5 (𝜑 → (𝐺𝐾) ∈ 𝐶)
28 eluzel2 11636 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
29 seq1 12754 . . . . . . 7 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐺)‘𝑀) = (𝐺𝑀))
301, 28, 293syl 18 . . . . . 6 (𝜑 → (seq𝑀( + , 𝐺)‘𝑀) = (𝐺𝑀))
31 seqf1olem2a.4 . . . . . . . 8 (𝜑 → (𝑀...𝑁) ⊆ 𝐴)
32 eluzfz1 12290 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
331, 32syl 17 . . . . . . . 8 (𝜑𝑀 ∈ (𝑀...𝑁))
3431, 33sseldd 3584 . . . . . . 7 (𝜑𝑀𝐴)
3525, 34ffvelrnd 6316 . . . . . 6 (𝜑 → (𝐺𝑀) ∈ 𝐶)
3630, 35eqeltrd 2698 . . . . 5 (𝜑 → (seq𝑀( + , 𝐺)‘𝑀) ∈ 𝐶)
3724, 27, 36caovcomd 6783 . . . 4 (𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑀)) = ((seq𝑀( + , 𝐺)‘𝑀) + (𝐺𝐾)))
3837a1i 11 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑀)) = ((seq𝑀( + , 𝐺)‘𝑀) + (𝐺𝐾))))
39 oveq1 6611 . . . . . 6 (((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺𝐾)) → (((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) + (𝐺‘(𝑛 + 1))) = (((seq𝑀( + , 𝐺)‘𝑛) + (𝐺𝐾)) + (𝐺‘(𝑛 + 1))))
40 elfzouz 12415 . . . . . . . . . . 11 (𝑛 ∈ (𝑀..^𝑁) → 𝑛 ∈ (ℤ𝑀))
4140adantl 482 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → 𝑛 ∈ (ℤ𝑀))
42 seqp1 12756 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐺)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))
4341, 42syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( + , 𝐺)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))
4443oveq2d 6620 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))) = ((𝐺𝐾) + ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))))
45 seqf1o.3 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
4645adantlr 750 . . . . . . . . 9 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
47 seqf1o.5 . . . . . . . . . . 11 (𝜑𝐶𝑆)
4847, 27sseldd 3584 . . . . . . . . . 10 (𝜑 → (𝐺𝐾) ∈ 𝑆)
4948adantr 481 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐺𝐾) ∈ 𝑆)
5047adantr 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → 𝐶𝑆)
5150adantr 481 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑛)) → 𝐶𝑆)
5225adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → 𝐺:𝐴𝐶)
5352adantr 481 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑛)) → 𝐺:𝐴𝐶)
54 elfzouz2 12425 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (𝑀..^𝑁) → 𝑁 ∈ (ℤ𝑛))
5554adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → 𝑁 ∈ (ℤ𝑛))
56 fzss2 12323 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ𝑛) → (𝑀...𝑛) ⊆ (𝑀...𝑁))
5755, 56syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝑀...𝑛) ⊆ (𝑀...𝑁))
5831adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝑀...𝑁) ⊆ 𝐴)
5957, 58sstrd 3593 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝑀...𝑛) ⊆ 𝐴)
6059sselda 3583 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑛)) → 𝑥𝐴)
6153, 60ffvelrnd 6316 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑛)) → (𝐺𝑥) ∈ 𝐶)
6251, 61sseldd 3584 . . . . . . . . . 10 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀...𝑛)) → (𝐺𝑥) ∈ 𝑆)
63 seqf1o.1 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
6463adantlr 750 . . . . . . . . . 10 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
6541, 62, 64seqcl 12761 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( + , 𝐺)‘𝑛) ∈ 𝑆)
66 fzofzp1 12506 . . . . . . . . . . . . 13 (𝑛 ∈ (𝑀..^𝑁) → (𝑛 + 1) ∈ (𝑀...𝑁))
6766adantl 482 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝑛 + 1) ∈ (𝑀...𝑁))
6858, 67sseldd 3584 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝑛 + 1) ∈ 𝐴)
6952, 68ffvelrnd 6316 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐺‘(𝑛 + 1)) ∈ 𝐶)
7050, 69sseldd 3584 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐺‘(𝑛 + 1)) ∈ 𝑆)
7146, 49, 65, 70caovassd 6786 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) + (𝐺‘(𝑛 + 1))) = ((𝐺𝐾) + ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))))
7244, 71eqtr4d 2658 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))) = (((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) + (𝐺‘(𝑛 + 1))))
7346, 65, 70, 49caovassd 6786 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))) + (𝐺𝐾)) = ((seq𝑀( + , 𝐺)‘𝑛) + ((𝐺‘(𝑛 + 1)) + (𝐺𝐾))))
7443oveq1d 6619 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺𝐾)) = (((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))) + (𝐺𝐾)))
7546, 65, 49, 70caovassd 6786 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐺)‘𝑛) + (𝐺𝐾)) + (𝐺‘(𝑛 + 1))) = ((seq𝑀( + , 𝐺)‘𝑛) + ((𝐺𝐾) + (𝐺‘(𝑛 + 1)))))
7624adantlr 750 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
7727adantr 481 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐺𝐾) ∈ 𝐶)
7876, 69, 77caovcomd 6783 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((𝐺‘(𝑛 + 1)) + (𝐺𝐾)) = ((𝐺𝐾) + (𝐺‘(𝑛 + 1))))
7978oveq2d 6620 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐺)‘𝑛) + ((𝐺‘(𝑛 + 1)) + (𝐺𝐾))) = ((seq𝑀( + , 𝐺)‘𝑛) + ((𝐺𝐾) + (𝐺‘(𝑛 + 1)))))
8075, 79eqtr4d 2658 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐺)‘𝑛) + (𝐺𝐾)) + (𝐺‘(𝑛 + 1))) = ((seq𝑀( + , 𝐺)‘𝑛) + ((𝐺‘(𝑛 + 1)) + (𝐺𝐾))))
8173, 74, 803eqtr4d 2665 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺𝐾)) = (((seq𝑀( + , 𝐺)‘𝑛) + (𝐺𝐾)) + (𝐺‘(𝑛 + 1))))
8272, 81eqeq12d 2636 . . . . . 6 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (((𝐺𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))) = ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺𝐾)) ↔ (((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) + (𝐺‘(𝑛 + 1))) = (((seq𝑀( + , 𝐺)‘𝑛) + (𝐺𝐾)) + (𝐺‘(𝑛 + 1)))))
8339, 82syl5ibr 236 . . . . 5 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺𝐾)) → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))) = ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺𝐾))))
8483expcom 451 . . . 4 (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → (((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺𝐾)) → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))) = ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺𝐾)))))
8584a2d 29 . . 3 (𝑛 ∈ (𝑀..^𝑁) → ((𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑛)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺𝐾))) → (𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘(𝑛 + 1))) = ((seq𝑀( + , 𝐺)‘(𝑛 + 1)) + (𝐺𝐾)))))
868, 13, 18, 23, 38, 85fzind2 12526 . 2 (𝑁 ∈ (𝑀...𝑁) → (𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑁)) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺𝐾))))
873, 86mpcom 38 1 (𝜑 → ((𝐺𝐾) + (seq𝑀( + , 𝐺)‘𝑁)) = ((seq𝑀( + , 𝐺)‘𝑁) + (𝐺𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wss 3555  wf 5843  cfv 5847  (class class class)co 6604  1c1 9881   + caddc 9883  cz 11321  cuz 11631  ...cfz 12268  ..^cfzo 12406  seqcseq 12741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-seq 12742
This theorem is referenced by:  seqf1olem2  12781
  Copyright terms: Public domain W3C validator