MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsmstopn Structured version   Visualization version   GIF version

Theorem setsmstopn 23088
Description: The topology of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
setsms.x (𝜑𝑋 = (Base‘𝑀))
setsms.d (𝜑𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
setsms.k (𝜑𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
setsms.m (𝜑𝑀𝑉)
Assertion
Ref Expression
setsmstopn (𝜑 → (MetOpen‘𝐷) = (TopOpen‘𝐾))

Proof of Theorem setsmstopn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 setsms.x . . 3 (𝜑𝑋 = (Base‘𝑀))
2 setsms.d . . 3 (𝜑𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
3 setsms.k . . 3 (𝜑𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
4 setsms.m . . 3 (𝜑𝑀𝑉)
51, 2, 3, 4setsmstset 23087 . 2 (𝜑 → (MetOpen‘𝐷) = (TopSet‘𝐾))
6 df-mopn 20541 . . . . . . . 8 MetOpen = (𝑥 ran ∞Met ↦ (topGen‘ran (ball‘𝑥)))
76dmmptss 6095 . . . . . . 7 dom MetOpen ⊆ ran ∞Met
87sseli 3963 . . . . . 6 (𝐷 ∈ dom MetOpen → 𝐷 ran ∞Met)
9 simpr 487 . . . . . . . . . . 11 ((𝜑𝐷 ran ∞Met) → 𝐷 ran ∞Met)
10 xmetunirn 22947 . . . . . . . . . . 11 (𝐷 ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷))
119, 10sylib 220 . . . . . . . . . 10 ((𝜑𝐷 ran ∞Met) → 𝐷 ∈ (∞Met‘dom dom 𝐷))
12 eqid 2821 . . . . . . . . . . 11 (MetOpen‘𝐷) = (MetOpen‘𝐷)
1312mopnuni 23051 . . . . . . . . . 10 (𝐷 ∈ (∞Met‘dom dom 𝐷) → dom dom 𝐷 = (MetOpen‘𝐷))
1411, 13syl 17 . . . . . . . . 9 ((𝜑𝐷 ran ∞Met) → dom dom 𝐷 = (MetOpen‘𝐷))
152dmeqd 5774 . . . . . . . . . . . . . 14 (𝜑 → dom 𝐷 = dom ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
16 dmres 5875 . . . . . . . . . . . . . 14 dom ((dist‘𝑀) ↾ (𝑋 × 𝑋)) = ((𝑋 × 𝑋) ∩ dom (dist‘𝑀))
1715, 16syl6eq 2872 . . . . . . . . . . . . 13 (𝜑 → dom 𝐷 = ((𝑋 × 𝑋) ∩ dom (dist‘𝑀)))
18 inss1 4205 . . . . . . . . . . . . 13 ((𝑋 × 𝑋) ∩ dom (dist‘𝑀)) ⊆ (𝑋 × 𝑋)
1917, 18eqsstrdi 4021 . . . . . . . . . . . 12 (𝜑 → dom 𝐷 ⊆ (𝑋 × 𝑋))
20 dmss 5771 . . . . . . . . . . . 12 (dom 𝐷 ⊆ (𝑋 × 𝑋) → dom dom 𝐷 ⊆ dom (𝑋 × 𝑋))
2119, 20syl 17 . . . . . . . . . . 11 (𝜑 → dom dom 𝐷 ⊆ dom (𝑋 × 𝑋))
22 dmxpid 5800 . . . . . . . . . . 11 dom (𝑋 × 𝑋) = 𝑋
2321, 22sseqtrdi 4017 . . . . . . . . . 10 (𝜑 → dom dom 𝐷𝑋)
2423adantr 483 . . . . . . . . 9 ((𝜑𝐷 ran ∞Met) → dom dom 𝐷𝑋)
2514, 24eqsstrrd 4006 . . . . . . . 8 ((𝜑𝐷 ran ∞Met) → (MetOpen‘𝐷) ⊆ 𝑋)
26 sspwuni 5022 . . . . . . . 8 ((MetOpen‘𝐷) ⊆ 𝒫 𝑋 (MetOpen‘𝐷) ⊆ 𝑋)
2725, 26sylibr 236 . . . . . . 7 ((𝜑𝐷 ran ∞Met) → (MetOpen‘𝐷) ⊆ 𝒫 𝑋)
2827ex 415 . . . . . 6 (𝜑 → (𝐷 ran ∞Met → (MetOpen‘𝐷) ⊆ 𝒫 𝑋))
298, 28syl5 34 . . . . 5 (𝜑 → (𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) ⊆ 𝒫 𝑋))
30 ndmfv 6700 . . . . . 6 𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) = ∅)
31 0ss 4350 . . . . . 6 ∅ ⊆ 𝒫 𝑋
3230, 31eqsstrdi 4021 . . . . 5 𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) ⊆ 𝒫 𝑋)
3329, 32pm2.61d1 182 . . . 4 (𝜑 → (MetOpen‘𝐷) ⊆ 𝒫 𝑋)
341, 2, 3setsmsbas 23085 . . . . 5 (𝜑𝑋 = (Base‘𝐾))
3534pweqd 4558 . . . 4 (𝜑 → 𝒫 𝑋 = 𝒫 (Base‘𝐾))
3633, 5, 353sstr3d 4013 . . 3 (𝜑 → (TopSet‘𝐾) ⊆ 𝒫 (Base‘𝐾))
37 eqid 2821 . . . 4 (Base‘𝐾) = (Base‘𝐾)
38 eqid 2821 . . . 4 (TopSet‘𝐾) = (TopSet‘𝐾)
3937, 38topnid 16709 . . 3 ((TopSet‘𝐾) ⊆ 𝒫 (Base‘𝐾) → (TopSet‘𝐾) = (TopOpen‘𝐾))
4036, 39syl 17 . 2 (𝜑 → (TopSet‘𝐾) = (TopOpen‘𝐾))
415, 40eqtrd 2856 1 (𝜑 → (MetOpen‘𝐷) = (TopOpen‘𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  cin 3935  wss 3936  c0 4291  𝒫 cpw 4539  cop 4573   cuni 4838   × cxp 5553  dom cdm 5555  ran crn 5556  cres 5557  cfv 6355  (class class class)co 7156  ndxcnx 16480   sSet csts 16481  Basecbs 16483  TopSetcts 16571  distcds 16574  TopOpenctopn 16695  topGenctg 16711  ∞Metcxmet 20530  ballcbl 20532  MetOpencmopn 20535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-tset 16584  df-rest 16696  df-topn 16697  df-topgen 16717  df-psmet 20537  df-xmet 20538  df-bl 20540  df-mopn 20541  df-top 21502  df-topon 21519  df-bases 21554
This theorem is referenced by:  setsxms  23089  tmslem  23092
  Copyright terms: Public domain W3C validator