MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmslem Structured version   Visualization version   GIF version

Theorem tmslem 23092
Description: Lemma for tmsbas 23093, tmsds 23094, and tmstopn 23095. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tmsval.m 𝑀 = {⟨(Base‘ndx), 𝑋⟩, ⟨(dist‘ndx), 𝐷⟩}
tmsval.k 𝐾 = (toMetSp‘𝐷)
Assertion
Ref Expression
tmslem (𝐷 ∈ (∞Met‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝐷 = (dist‘𝐾) ∧ (MetOpen‘𝐷) = (TopOpen‘𝐾)))

Proof of Theorem tmslem
StepHypRef Expression
1 elfvdm 6702 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
2 tmsval.m . . . . 5 𝑀 = {⟨(Base‘ndx), 𝑋⟩, ⟨(dist‘ndx), 𝐷⟩}
3 df-ds 16587 . . . . 5 dist = Slot 12
4 1nn 11649 . . . . . 6 1 ∈ ℕ
5 2nn0 11915 . . . . . 6 2 ∈ ℕ0
6 1nn0 11914 . . . . . 6 1 ∈ ℕ0
7 1lt10 12238 . . . . . 6 1 < 10
84, 5, 6, 7declti 12137 . . . . 5 1 < 12
9 2nn 11711 . . . . . 6 2 ∈ ℕ
106, 9decnncl 12119 . . . . 5 12 ∈ ℕ
112, 3, 8, 102strbas 16603 . . . 4 (𝑋 ∈ dom ∞Met → 𝑋 = (Base‘𝑀))
121, 11syl 17 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = (Base‘𝑀))
13 xmetf 22939 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
14 ffn 6514 . . . . 5 (𝐷:(𝑋 × 𝑋)⟶ℝ*𝐷 Fn (𝑋 × 𝑋))
15 fnresdm 6466 . . . . 5 (𝐷 Fn (𝑋 × 𝑋) → (𝐷 ↾ (𝑋 × 𝑋)) = 𝐷)
1613, 14, 153syl 18 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑋 × 𝑋)) = 𝐷)
172, 3, 8, 102strop 16604 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 = (dist‘𝑀))
1817reseq1d 5852 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑋 × 𝑋)) = ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
1916, 18eqtr3d 2858 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
20 tmsval.k . . . 4 𝐾 = (toMetSp‘𝐷)
212, 20tmsval 23091 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
2212, 19, 21setsmsbas 23085 . 2 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = (Base‘𝐾))
2312, 19, 21setsmsds 23086 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (dist‘𝑀) = (dist‘𝐾))
2417, 23eqtrd 2856 . 2 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 = (dist‘𝐾))
25 prex 5333 . . . . 5 {⟨(Base‘ndx), 𝑋⟩, ⟨(dist‘ndx), 𝐷⟩} ∈ V
262, 25eqeltri 2909 . . . 4 𝑀 ∈ V
2726a1i 11 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝑀 ∈ V)
2812, 19, 21, 27setsmstopn 23088 . 2 (𝐷 ∈ (∞Met‘𝑋) → (MetOpen‘𝐷) = (TopOpen‘𝐾))
2922, 24, 283jca 1124 1 (𝐷 ∈ (∞Met‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝐷 = (dist‘𝐾) ∧ (MetOpen‘𝐷) = (TopOpen‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1537  wcel 2114  Vcvv 3494  {cpr 4569  cop 4573   × cxp 5553  dom cdm 5555  cres 5557   Fn wfn 6350  wf 6351  cfv 6355  1c1 10538  *cxr 10674  2c2 11693  cdc 12099  ndxcnx 16480  Basecbs 16483  distcds 16574  TopOpenctopn 16695  ∞Metcxmet 20530  MetOpencmopn 20535  toMetSpctms 22929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-tset 16584  df-ds 16587  df-rest 16696  df-topn 16697  df-topgen 16717  df-psmet 20537  df-xmet 20538  df-bl 20540  df-mopn 20541  df-top 21502  df-topon 21519  df-bases 21554  df-tms 22932
This theorem is referenced by:  tmsbas  23093  tmsds  23094  tmstopn  23095
  Copyright terms: Public domain W3C validator