MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmslem Structured version   Visualization version   GIF version

Theorem tmslem 22206
Description: Lemma for tmsbas 22207, tmsds 22208, and tmstopn 22209. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tmsval.m 𝑀 = {⟨(Base‘ndx), 𝑋⟩, ⟨(dist‘ndx), 𝐷⟩}
tmsval.k 𝐾 = (toMetSp‘𝐷)
Assertion
Ref Expression
tmslem (𝐷 ∈ (∞Met‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝐷 = (dist‘𝐾) ∧ (MetOpen‘𝐷) = (TopOpen‘𝐾)))

Proof of Theorem tmslem
StepHypRef Expression
1 elfvdm 6182 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
2 tmsval.m . . . . 5 𝑀 = {⟨(Base‘ndx), 𝑋⟩, ⟨(dist‘ndx), 𝐷⟩}
3 df-ds 15892 . . . . 5 dist = Slot 12
4 1nn 10982 . . . . . 6 1 ∈ ℕ
5 2nn0 11260 . . . . . 6 2 ∈ ℕ0
6 1nn0 11259 . . . . . 6 1 ∈ ℕ0
7 1lt10 11632 . . . . . 6 1 < 10
84, 5, 6, 7declti 11497 . . . . 5 1 < 12
9 2nn 11136 . . . . . 6 2 ∈ ℕ
106, 9decnncl 11469 . . . . 5 12 ∈ ℕ
112, 3, 8, 102strbas 15912 . . . 4 (𝑋 ∈ dom ∞Met → 𝑋 = (Base‘𝑀))
121, 11syl 17 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = (Base‘𝑀))
13 xmetf 22053 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
14 ffn 6007 . . . . 5 (𝐷:(𝑋 × 𝑋)⟶ℝ*𝐷 Fn (𝑋 × 𝑋))
15 fnresdm 5963 . . . . 5 (𝐷 Fn (𝑋 × 𝑋) → (𝐷 ↾ (𝑋 × 𝑋)) = 𝐷)
1613, 14, 153syl 18 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑋 × 𝑋)) = 𝐷)
172, 3, 8, 102strop 15913 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 = (dist‘𝑀))
1817reseq1d 5360 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑋 × 𝑋)) = ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
1916, 18eqtr3d 2657 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
20 tmsval.k . . . 4 𝐾 = (toMetSp‘𝐷)
212, 20tmsval 22205 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
2212, 19, 21setsmsbas 22199 . 2 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = (Base‘𝐾))
2312, 19, 21setsmsds 22200 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (dist‘𝑀) = (dist‘𝐾))
2417, 23eqtrd 2655 . 2 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 = (dist‘𝐾))
25 prex 4875 . . . . 5 {⟨(Base‘ndx), 𝑋⟩, ⟨(dist‘ndx), 𝐷⟩} ∈ V
262, 25eqeltri 2694 . . . 4 𝑀 ∈ V
2726a1i 11 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝑀 ∈ V)
2812, 19, 21, 27setsmstopn 22202 . 2 (𝐷 ∈ (∞Met‘𝑋) → (MetOpen‘𝐷) = (TopOpen‘𝐾))
2922, 24, 283jca 1240 1 (𝐷 ∈ (∞Met‘𝑋) → (𝑋 = (Base‘𝐾) ∧ 𝐷 = (dist‘𝐾) ∧ (MetOpen‘𝐷) = (TopOpen‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1036   = wceq 1480  wcel 1987  Vcvv 3189  {cpr 4155  cop 4159   × cxp 5077  dom cdm 5079  cres 5081   Fn wfn 5847  wf 5848  cfv 5852  1c1 9888  *cxr 10024  2c2 11021  cdc 11444  ndxcnx 15785  Basecbs 15788  distcds 15878  TopOpenctopn 16010  ∞Metcxmt 19659  MetOpencmopn 19664  toMetSpctmt 22043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-map 7811  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-sup 8299  df-inf 8300  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-4 11032  df-5 11033  df-6 11034  df-7 11035  df-8 11036  df-9 11037  df-n0 11244  df-z 11329  df-dec 11445  df-uz 11639  df-q 11740  df-rp 11784  df-xneg 11897  df-xadd 11898  df-xmul 11899  df-fz 12276  df-struct 15790  df-ndx 15791  df-slot 15792  df-base 15793  df-sets 15794  df-tset 15888  df-ds 15892  df-rest 16011  df-topn 16012  df-topgen 16032  df-psmet 19666  df-xmet 19667  df-bl 19669  df-mopn 19670  df-top 20627  df-topon 20644  df-bases 20670  df-tms 22046
This theorem is referenced by:  tmsbas  22207  tmsds  22208  tmstopn  22209
  Copyright terms: Public domain W3C validator