Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsuplem2 Structured version   Visualization version   GIF version

Theorem smflimsuplem2 43144
Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsuplem2.p 𝑚𝜑
smflimsuplem2.m (𝜑𝑀 ∈ ℤ)
smflimsuplem2.z 𝑍 = (ℤ𝑀)
smflimsuplem2.s (𝜑𝑆 ∈ SAlg)
smflimsuplem2.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimsuplem2.e 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
smflimsuplem2.h 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
smflimsuplem2.n (𝜑𝑛𝑍)
smflimsuplem2.r (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
smflimsuplem2.x (𝜑𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
Assertion
Ref Expression
smflimsuplem2 (𝜑𝑋 ∈ dom (𝐻𝑛))
Distinct variable groups:   𝑥,𝐹   𝑚,𝑀   𝑚,𝑋   𝑚,𝑍,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝑆(𝑥,𝑚,𝑛)   𝐸(𝑥,𝑚,𝑛)   𝐹(𝑚,𝑛)   𝐻(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑛)   𝑋(𝑥,𝑛)

Proof of Theorem smflimsuplem2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 smflimsuplem2.x . . . 4 (𝜑𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
2 smflimsuplem2.p . . . . . 6 𝑚𝜑
3 eqid 2821 . . . . . 6 (ℤ𝑛) = (ℤ𝑛)
4 smflimsuplem2.n . . . . . . . . . . . . 13 (𝜑𝑛𝑍)
5 smflimsuplem2.z . . . . . . . . . . . . 13 𝑍 = (ℤ𝑀)
64, 5eleqtrdi 2923 . . . . . . . . . . . 12 (𝜑𝑛 ∈ (ℤ𝑀))
7 uzss 12266 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ𝑀) → (ℤ𝑛) ⊆ (ℤ𝑀))
86, 7syl 17 . . . . . . . . . . 11 (𝜑 → (ℤ𝑛) ⊆ (ℤ𝑀))
98, 5sseqtrrdi 4018 . . . . . . . . . 10 (𝜑 → (ℤ𝑛) ⊆ 𝑍)
109adantr 483 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ𝑛)) → (ℤ𝑛) ⊆ 𝑍)
11 simpr 487 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑛))
1210, 11sseldd 3968 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
13 smflimsuplem2.s . . . . . . . . . 10 (𝜑𝑆 ∈ SAlg)
1413adantr 483 . . . . . . . . 9 ((𝜑𝑚𝑍) → 𝑆 ∈ SAlg)
15 smflimsuplem2.f . . . . . . . . . 10 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
1615ffvelrnda 6851 . . . . . . . . 9 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
17 eqid 2821 . . . . . . . . 9 dom (𝐹𝑚) = dom (𝐹𝑚)
1814, 16, 17smff 43058 . . . . . . . 8 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
1912, 18syldan 593 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑛)) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
20 iinss2 4981 . . . . . . . . 9 (𝑚 ∈ (ℤ𝑛) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ dom (𝐹𝑚))
2120adantl 484 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ⊆ dom (𝐹𝑚))
221adantr 483 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑛)) → 𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
2321, 22sseldd 3968 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑛)) → 𝑋 ∈ dom (𝐹𝑚))
2419, 23ffvelrnd 6852 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑋) ∈ ℝ)
25 nfmpt1 5164 . . . . . . . . 9 𝑚(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))
26 nfmpt1 5164 . . . . . . . . 9 𝑚(𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋))
27 eluzelz 12254 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
286, 27syl 17 . . . . . . . . 9 (𝜑𝑛 ∈ ℤ)
29 eqid 2821 . . . . . . . . . . 11 (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))
302, 24, 29fmptdf 6881 . . . . . . . . . 10 (𝜑 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)):(ℤ𝑛)⟶ℝ)
3130ffnd 6515 . . . . . . . . 9 (𝜑 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) Fn (ℤ𝑛))
32 smflimsuplem2.m . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
33 nfcv 2977 . . . . . . . . . 10 𝑚(ℤ𝑀)
34 fvexd 6685 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ𝑀)) → ((𝐹𝑚)‘𝑋) ∈ V)
3533, 2, 34mptfnd 41561 . . . . . . . . 9 (𝜑 → (𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋)) Fn (ℤ𝑀))
3629a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)))
37 fvexd 6685 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑋) ∈ V)
3836, 37fvmpt2d 6781 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ𝑛)) → ((𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))‘𝑚) = ((𝐹𝑚)‘𝑋))
3912, 5eleqtrdi 2923 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑀))
40 eqid 2821 . . . . . . . . . . . 12 (𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋)) = (𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋))
4140fvmpt2 6779 . . . . . . . . . . 11 ((𝑚 ∈ (ℤ𝑀) ∧ ((𝐹𝑚)‘𝑋) ∈ V) → ((𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋))‘𝑚) = ((𝐹𝑚)‘𝑋))
4239, 37, 41syl2anc 586 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℤ𝑛)) → ((𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋))‘𝑚) = ((𝐹𝑚)‘𝑋))
4338, 42eqtr4d 2859 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℤ𝑛)) → ((𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))‘𝑚) = ((𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋))‘𝑚))
442, 25, 26, 28, 31, 32, 35, 28, 43limsupequz 42053 . . . . . . . 8 (𝜑 → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))) = (lim sup‘(𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋))))
455eqcomi 2830 . . . . . . . . . . 11 (ℤ𝑀) = 𝑍
4645mpteq1i 5156 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))
4746fveq2i 6673 . . . . . . . . 9 (lim sup‘(𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋))) = (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)))
4847a1i 11 . . . . . . . 8 (𝜑 → (lim sup‘(𝑚 ∈ (ℤ𝑀) ↦ ((𝐹𝑚)‘𝑋))) = (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
4944, 48eqtrd 2856 . . . . . . 7 (𝜑 → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))) = (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))))
50 smflimsuplem2.r . . . . . . . 8 (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
5150renepnfd 10692 . . . . . . 7 (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ≠ +∞)
5249, 51eqnetrd 3083 . . . . . 6 (𝜑 → (lim sup‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))) ≠ +∞)
532, 3, 24, 52limsupubuzmpt 42049 . . . . 5 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ≤ 𝑦)
54 uzid 12259 . . . . . . 7 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
55 ne0i 4300 . . . . . . 7 (𝑛 ∈ (ℤ𝑛) → (ℤ𝑛) ≠ ∅)
5628, 54, 553syl 18 . . . . . 6 (𝜑 → (ℤ𝑛) ≠ ∅)
572, 56, 24supxrre3rnmpt 41752 . . . . 5 (𝜑 → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ≤ 𝑦))
5853, 57mpbird 259 . . . 4 (𝜑 → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ)
591, 58jca 514 . . 3 (𝜑 → (𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ))
60 fveq2 6670 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
6160mpteq2dv 5162 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)))
6261rneqd 5808 . . . . . . . 8 (𝑥 = 𝑦 → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)))
6362supeq1d 8910 . . . . . . 7 (𝑥 = 𝑦 → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ))
6463eleq1d 2897 . . . . . 6 (𝑥 = 𝑦 → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ))
6564cbvrabv 3491 . . . . 5 {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑦 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ}
6665eleq2i 2904 . . . 4 (𝑋 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ↔ 𝑋 ∈ {𝑦 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ})
67 fveq2 6670 . . . . . . . . 9 (𝑦 = 𝑋 → ((𝐹𝑚)‘𝑦) = ((𝐹𝑚)‘𝑋))
6867mpteq2dv 5162 . . . . . . . 8 (𝑦 = 𝑋 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)))
6968rneqd 5808 . . . . . . 7 (𝑦 = 𝑋 → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)) = ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)))
7069supeq1d 8910 . . . . . 6 (𝑦 = 𝑋 → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ))
7170eleq1d 2897 . . . . 5 (𝑦 = 𝑋 → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ ↔ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ))
7271elrab 3680 . . . 4 (𝑋 ∈ {𝑦 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ ℝ} ↔ (𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ))
7366, 72bitri 277 . . 3 (𝑋 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ↔ (𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)), ℝ*, < ) ∈ ℝ))
7459, 73sylibr 236 . 2 (𝜑𝑋 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
75 id 22 . . . . 5 (𝜑𝜑)
76 smflimsuplem2.h . . . . . . 7 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
7776a1i 11 . . . . . 6 (𝜑𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))))
78 smflimsuplem2.e . . . . . . . . . 10 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
79 nfcv 2977 . . . . . . . . . . 11 𝑥𝑍
80 nfrab1 3384 . . . . . . . . . . 11 𝑥{𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}
8179, 80nfmpt 5163 . . . . . . . . . 10 𝑥(𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
8278, 81nfcxfr 2975 . . . . . . . . 9 𝑥𝐸
83 nfcv 2977 . . . . . . . . 9 𝑥𝑛
8482, 83nffv 6680 . . . . . . . 8 𝑥(𝐸𝑛)
85 fvex 6683 . . . . . . . 8 (𝐸𝑛) ∈ V
8684, 85mptexf 41556 . . . . . . 7 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ V
8786a1i 11 . . . . . 6 ((𝜑𝑛𝑍) → (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ V)
8877, 87fvmpt2d 6781 . . . . 5 ((𝜑𝑛𝑍) → (𝐻𝑛) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
8975, 4, 88syl2anc 586 . . . 4 (𝜑 → (𝐻𝑛) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
9089dmeqd 5774 . . 3 (𝜑 → dom (𝐻𝑛) = dom (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
91 nfcv 2977 . . . . 5 𝑦(𝐸𝑛)
92 nfcv 2977 . . . . 5 𝑦sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )
93 nfcv 2977 . . . . 5 𝑥sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < )
9484, 91, 92, 93, 63cbvmptf 5165 . . . 4 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝑦 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ))
95 xrltso 12535 . . . . . 6 < Or ℝ*
9695supex 8927 . . . . 5 sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ V
9796a1i 11 . . . 4 ((𝜑𝑦 ∈ (𝐸𝑛)) → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑦)), ℝ*, < ) ∈ V)
9894, 97dmmptd 6493 . . 3 (𝜑 → dom (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝐸𝑛))
99 eqid 2821 . . . . 5 {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}
100 fvex 6683 . . . . . . . . 9 (𝐹𝑚) ∈ V
101100dmex 7616 . . . . . . . 8 dom (𝐹𝑚) ∈ V
102101rgenw 3150 . . . . . . 7 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
103102a1i 11 . . . . . 6 (𝜑 → ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
10456, 103iinexd 41449 . . . . 5 (𝜑 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
10599, 104rabexd 5236 . . . 4 (𝜑 → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V)
10678fvmpt2 6779 . . . 4 ((𝑛𝑍 ∧ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V) → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
1074, 105, 106syl2anc 586 . . 3 (𝜑 → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
10890, 98, 1073eqtrrd 2861 . 2 (𝜑 → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = dom (𝐻𝑛))
10974, 108eleqtrd 2915 1 (𝜑𝑋 ∈ dom (𝐻𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wnf 1784  wcel 2114  wne 3016  wral 3138  wrex 3139  {crab 3142  Vcvv 3494  wss 3936  c0 4291   ciin 4920   class class class wbr 5066  cmpt 5146  dom cdm 5555  ran crn 5556  wf 6351  cfv 6355  supcsup 8904  cr 10536  +∞cpnf 10672  *cxr 10674   < clt 10675  cle 10676  cz 11982  cuz 12244  lim supclsp 14827  SAlgcsalg 42642  SMblFncsmblfn 43026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-ioo 12743  df-ico 12745  df-fz 12894  df-fl 13163  df-ceil 13164  df-limsup 14828  df-smblfn 43027
This theorem is referenced by:  smflimsuplem7  43149
  Copyright terms: Public domain W3C validator