MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sralem Structured version   Visualization version   GIF version

Theorem sralem 18947
Description: Lemma for srabase 18948 and similar theorems. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
srapart.a (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
srapart.s (𝜑𝑆 ⊆ (Base‘𝑊))
sralem.1 𝐸 = Slot 𝑁
sralem.2 𝑁 ∈ ℕ
sralem.3 (𝑁 < 5 ∨ 8 < 𝑁)
Assertion
Ref Expression
sralem (𝜑 → (𝐸𝑊) = (𝐸𝐴))

Proof of Theorem sralem
StepHypRef Expression
1 srapart.a . . . . . 6 (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
21adantl 481 . . . . 5 ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆))
3 srapart.s . . . . . 6 (𝜑𝑆 ⊆ (Base‘𝑊))
4 sraval 18946 . . . . . 6 ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
53, 4sylan2 490 . . . . 5 ((𝑊 ∈ V ∧ 𝜑) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
62, 5eqtrd 2644 . . . 4 ((𝑊 ∈ V ∧ 𝜑) → 𝐴 = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
76fveq2d 6092 . . 3 ((𝑊 ∈ V ∧ 𝜑) → (𝐸𝐴) = (𝐸‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
8 sralem.1 . . . . . 6 𝐸 = Slot 𝑁
9 sralem.2 . . . . . 6 𝑁 ∈ ℕ
108, 9ndxid 15665 . . . . 5 𝐸 = Slot (𝐸‘ndx)
11 sralem.3 . . . . . . 7 (𝑁 < 5 ∨ 8 < 𝑁)
129nnrei 10879 . . . . . . . . . 10 𝑁 ∈ ℝ
13 5re 10949 . . . . . . . . . 10 5 ∈ ℝ
1412, 13ltnei 10013 . . . . . . . . 9 (𝑁 < 5 → 5 ≠ 𝑁)
1514necomd 2837 . . . . . . . 8 (𝑁 < 5 → 𝑁 ≠ 5)
16 5lt8 11067 . . . . . . . . . 10 5 < 8
17 8re 10955 . . . . . . . . . . 11 8 ∈ ℝ
1813, 17, 12lttri 10015 . . . . . . . . . 10 ((5 < 8 ∧ 8 < 𝑁) → 5 < 𝑁)
1916, 18mpan 702 . . . . . . . . 9 (8 < 𝑁 → 5 < 𝑁)
2013, 12ltnei 10013 . . . . . . . . 9 (5 < 𝑁𝑁 ≠ 5)
2119, 20syl 17 . . . . . . . 8 (8 < 𝑁𝑁 ≠ 5)
2215, 21jaoi 393 . . . . . . 7 ((𝑁 < 5 ∨ 8 < 𝑁) → 𝑁 ≠ 5)
2311, 22ax-mp 5 . . . . . 6 𝑁 ≠ 5
248, 9ndxarg 15664 . . . . . . 7 (𝐸‘ndx) = 𝑁
25 scandx 15785 . . . . . . 7 (Scalar‘ndx) = 5
2624, 25neeq12i 2848 . . . . . 6 ((𝐸‘ndx) ≠ (Scalar‘ndx) ↔ 𝑁 ≠ 5)
2723, 26mpbir 220 . . . . 5 (𝐸‘ndx) ≠ (Scalar‘ndx)
2810, 27setsnid 15692 . . . 4 (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩))
29 5lt6 11054 . . . . . . . . . . 11 5 < 6
30 6re 10951 . . . . . . . . . . . 12 6 ∈ ℝ
3112, 13, 30lttri 10015 . . . . . . . . . . 11 ((𝑁 < 5 ∧ 5 < 6) → 𝑁 < 6)
3229, 31mpan2 703 . . . . . . . . . 10 (𝑁 < 5 → 𝑁 < 6)
3312, 30ltnei 10013 . . . . . . . . . 10 (𝑁 < 6 → 6 ≠ 𝑁)
3432, 33syl 17 . . . . . . . . 9 (𝑁 < 5 → 6 ≠ 𝑁)
3534necomd 2837 . . . . . . . 8 (𝑁 < 5 → 𝑁 ≠ 6)
36 6lt8 11066 . . . . . . . . . 10 6 < 8
3730, 17, 12lttri 10015 . . . . . . . . . 10 ((6 < 8 ∧ 8 < 𝑁) → 6 < 𝑁)
3836, 37mpan 702 . . . . . . . . 9 (8 < 𝑁 → 6 < 𝑁)
3930, 12ltnei 10013 . . . . . . . . 9 (6 < 𝑁𝑁 ≠ 6)
4038, 39syl 17 . . . . . . . 8 (8 < 𝑁𝑁 ≠ 6)
4135, 40jaoi 393 . . . . . . 7 ((𝑁 < 5 ∨ 8 < 𝑁) → 𝑁 ≠ 6)
4211, 41ax-mp 5 . . . . . 6 𝑁 ≠ 6
43 vscandx 15787 . . . . . . 7 ( ·𝑠 ‘ndx) = 6
4424, 43neeq12i 2848 . . . . . 6 ((𝐸‘ndx) ≠ ( ·𝑠 ‘ndx) ↔ 𝑁 ≠ 6)
4542, 44mpbir 220 . . . . 5 (𝐸‘ndx) ≠ ( ·𝑠 ‘ndx)
4610, 45setsnid 15692 . . . 4 (𝐸‘(𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)) = (𝐸‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩))
4712, 13, 17lttri 10015 . . . . . . . . . . 11 ((𝑁 < 5 ∧ 5 < 8) → 𝑁 < 8)
4816, 47mpan2 703 . . . . . . . . . 10 (𝑁 < 5 → 𝑁 < 8)
4912, 17ltnei 10013 . . . . . . . . . 10 (𝑁 < 8 → 8 ≠ 𝑁)
5048, 49syl 17 . . . . . . . . 9 (𝑁 < 5 → 8 ≠ 𝑁)
5150necomd 2837 . . . . . . . 8 (𝑁 < 5 → 𝑁 ≠ 8)
5217, 12ltnei 10013 . . . . . . . 8 (8 < 𝑁𝑁 ≠ 8)
5351, 52jaoi 393 . . . . . . 7 ((𝑁 < 5 ∨ 8 < 𝑁) → 𝑁 ≠ 8)
5411, 53ax-mp 5 . . . . . 6 𝑁 ≠ 8
55 ipndx 15794 . . . . . . 7 (·𝑖‘ndx) = 8
5624, 55neeq12i 2848 . . . . . 6 ((𝐸‘ndx) ≠ (·𝑖‘ndx) ↔ 𝑁 ≠ 8)
5754, 56mpbir 220 . . . . 5 (𝐸‘ndx) ≠ (·𝑖‘ndx)
5810, 57setsnid 15692 . . . 4 (𝐸‘((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩)) = (𝐸‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
5928, 46, 583eqtri 2636 . . 3 (𝐸𝑊) = (𝐸‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
607, 59syl6reqr 2663 . 2 ((𝑊 ∈ V ∧ 𝜑) → (𝐸𝑊) = (𝐸𝐴))
618str0 15688 . . 3 ∅ = (𝐸‘∅)
62 fvprc 6082 . . . 4 𝑊 ∈ V → (𝐸𝑊) = ∅)
6362adantr 480 . . 3 ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝐸𝑊) = ∅)
64 fvprc 6082 . . . . . . 7 𝑊 ∈ V → (subringAlg ‘𝑊) = ∅)
6564fveq1d 6090 . . . . . 6 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = (∅‘𝑆))
66 0fv 6122 . . . . . 6 (∅‘𝑆) = ∅
6765, 66syl6eq 2660 . . . . 5 𝑊 ∈ V → ((subringAlg ‘𝑊)‘𝑆) = ∅)
681, 67sylan9eqr 2666 . . . 4 ((¬ 𝑊 ∈ V ∧ 𝜑) → 𝐴 = ∅)
6968fveq2d 6092 . . 3 ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝐸𝐴) = (𝐸‘∅))
7061, 63, 693eqtr4a 2670 . 2 ((¬ 𝑊 ∈ V ∧ 𝜑) → (𝐸𝑊) = (𝐸𝐴))
7160, 70pm2.61ian 827 1 (𝜑 → (𝐸𝑊) = (𝐸𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780  Vcvv 3173  wss 3540  c0 3874  cop 4131   class class class wbr 4578  cfv 5790  (class class class)co 6527   < clt 9931  cn 10870  5c5 10923  6c6 10924  8c8 10926  ndxcnx 15641   sSet csts 15642  Slot cslot 15643  Basecbs 15644  s cress 15645  .rcmulr 15718  Scalarcsca 15720   ·𝑠 cvsca 15721  ·𝑖cip 15722  subringAlg csra 18938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4368  df-iun 4452  df-br 4579  df-opab 4639  df-mpt 4640  df-tr 4676  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-er 7607  df-en 7820  df-dom 7821  df-sdom 7822  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-nn 10871  df-2 10929  df-3 10930  df-4 10931  df-5 10932  df-6 10933  df-7 10934  df-8 10935  df-ndx 15647  df-slot 15648  df-sets 15650  df-sca 15733  df-vsca 15734  df-ip 15735  df-sra 18942
This theorem is referenced by:  srabase  18948  sraaddg  18949  sramulr  18950  sratset  18954  srads  18956  cchhllem  25513
  Copyright terms: Public domain W3C validator