Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  srhmsubc Structured version   Visualization version   GIF version

Theorem srhmsubc 41337
Description: According to df-subc 16388, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 ( see subcssc 16416 and subcss2 16419). Therefore, the set of special ring homomorphisms (i.e. ring homomorphisms from a special ring to another ring of that kind) is a "subcategory" of the category of (unital) rings. (Contributed by AV, 19-Feb-2020.)
Hypotheses
Ref Expression
srhmsubc.s 𝑟𝑆 𝑟 ∈ Ring
srhmsubc.c 𝐶 = (𝑈𝑆)
srhmsubc.j 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))
Assertion
Ref Expression
srhmsubc (𝑈𝑉𝐽 ∈ (Subcat‘(RingCat‘𝑈)))
Distinct variable groups:   𝑆,𝑟   𝐶,𝑟,𝑠   𝑈,𝑟,𝑠   𝑉,𝑟,𝑠
Allowed substitution hints:   𝑆(𝑠)   𝐽(𝑠,𝑟)

Proof of Theorem srhmsubc
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srhmsubc.c . . . 4 𝐶 = (𝑈𝑆)
2 eleq1 2692 . . . . . . 7 (𝑟 = 𝑥 → (𝑟 ∈ Ring ↔ 𝑥 ∈ Ring))
3 srhmsubc.s . . . . . . 7 𝑟𝑆 𝑟 ∈ Ring
42, 3vtoclri 3274 . . . . . 6 (𝑥𝑆𝑥 ∈ Ring)
54ssriv 3592 . . . . 5 𝑆 ⊆ Ring
6 sslin 3822 . . . . 5 (𝑆 ⊆ Ring → (𝑈𝑆) ⊆ (𝑈 ∩ Ring))
75, 6mp1i 13 . . . 4 (𝑈𝑉 → (𝑈𝑆) ⊆ (𝑈 ∩ Ring))
81, 7syl5eqss 3633 . . 3 (𝑈𝑉𝐶 ⊆ (𝑈 ∩ Ring))
9 ssid 3608 . . . . . 6 (𝑥 RingHom 𝑦) ⊆ (𝑥 RingHom 𝑦)
10 eqid 2626 . . . . . . 7 (RingCat‘𝑈) = (RingCat‘𝑈)
11 eqid 2626 . . . . . . 7 (Base‘(RingCat‘𝑈)) = (Base‘(RingCat‘𝑈))
12 simpl 473 . . . . . . 7 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝑈𝑉)
13 eqid 2626 . . . . . . 7 (Hom ‘(RingCat‘𝑈)) = (Hom ‘(RingCat‘𝑈))
143, 1srhmsubclem2 41335 . . . . . . . 8 ((𝑈𝑉𝑥𝐶) → 𝑥 ∈ (Base‘(RingCat‘𝑈)))
1514adantrr 752 . . . . . . 7 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝑥 ∈ (Base‘(RingCat‘𝑈)))
163, 1srhmsubclem2 41335 . . . . . . . 8 ((𝑈𝑉𝑦𝐶) → 𝑦 ∈ (Base‘(RingCat‘𝑈)))
1716adantrl 751 . . . . . . 7 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝑦 ∈ (Base‘(RingCat‘𝑈)))
1810, 11, 12, 13, 15, 17ringchom 41274 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(Hom ‘(RingCat‘𝑈))𝑦) = (𝑥 RingHom 𝑦))
199, 18syl5sseqr 3638 . . . . 5 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 RingHom 𝑦) ⊆ (𝑥(Hom ‘(RingCat‘𝑈))𝑦))
20 srhmsubc.j . . . . . . 7 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))
2120a1i 11 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠)))
22 oveq12 6614 . . . . . . 7 ((𝑟 = 𝑥𝑠 = 𝑦) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑦))
2322adantl 482 . . . . . 6 (((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) ∧ (𝑟 = 𝑥𝑠 = 𝑦)) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑦))
24 simprl 793 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝑥𝐶)
25 simprr 795 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝑦𝐶)
26 ovex 6633 . . . . . . 7 (𝑥 RingHom 𝑦) ∈ V
2726a1i 11 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 RingHom 𝑦) ∈ V)
2821, 23, 24, 25, 27ovmpt2d 6742 . . . . 5 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥𝐽𝑦) = (𝑥 RingHom 𝑦))
29 eqid 2626 . . . . . 6 (Homf ‘(RingCat‘𝑈)) = (Homf ‘(RingCat‘𝑈))
3029, 11, 13, 15, 17homfval 16268 . . . . 5 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(Homf ‘(RingCat‘𝑈))𝑦) = (𝑥(Hom ‘(RingCat‘𝑈))𝑦))
3119, 28, 303sstr4d 3632 . . . 4 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥𝐽𝑦) ⊆ (𝑥(Homf ‘(RingCat‘𝑈))𝑦))
3231ralrimivva 2970 . . 3 (𝑈𝑉 → ∀𝑥𝐶𝑦𝐶 (𝑥𝐽𝑦) ⊆ (𝑥(Homf ‘(RingCat‘𝑈))𝑦))
33 ovex 6633 . . . . . 6 (𝑟 RingHom 𝑠) ∈ V
3420, 33fnmpt2i 7185 . . . . 5 𝐽 Fn (𝐶 × 𝐶)
3534a1i 11 . . . 4 (𝑈𝑉𝐽 Fn (𝐶 × 𝐶))
3629, 11homffn 16269 . . . . 5 (Homf ‘(RingCat‘𝑈)) Fn ((Base‘(RingCat‘𝑈)) × (Base‘(RingCat‘𝑈)))
37 id 22 . . . . . . . . 9 (𝑈𝑉𝑈𝑉)
3810, 11, 37ringcbas 41272 . . . . . . . 8 (𝑈𝑉 → (Base‘(RingCat‘𝑈)) = (𝑈 ∩ Ring))
3938eqcomd 2632 . . . . . . 7 (𝑈𝑉 → (𝑈 ∩ Ring) = (Base‘(RingCat‘𝑈)))
4039sqxpeqd 5106 . . . . . 6 (𝑈𝑉 → ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)) = ((Base‘(RingCat‘𝑈)) × (Base‘(RingCat‘𝑈))))
4140fneq2d 5942 . . . . 5 (𝑈𝑉 → ((Homf ‘(RingCat‘𝑈)) Fn ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)) ↔ (Homf ‘(RingCat‘𝑈)) Fn ((Base‘(RingCat‘𝑈)) × (Base‘(RingCat‘𝑈)))))
4236, 41mpbiri 248 . . . 4 (𝑈𝑉 → (Homf ‘(RingCat‘𝑈)) Fn ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))
43 inex1g 4766 . . . 4 (𝑈𝑉 → (𝑈 ∩ Ring) ∈ V)
4435, 42, 43isssc 16396 . . 3 (𝑈𝑉 → (𝐽cat (Homf ‘(RingCat‘𝑈)) ↔ (𝐶 ⊆ (𝑈 ∩ Ring) ∧ ∀𝑥𝐶𝑦𝐶 (𝑥𝐽𝑦) ⊆ (𝑥(Homf ‘(RingCat‘𝑈))𝑦))))
458, 32, 44mpbir2and 956 . 2 (𝑈𝑉𝐽cat (Homf ‘(RingCat‘𝑈)))
461elin2 3784 . . . . . . . 8 (𝑥𝐶 ↔ (𝑥𝑈𝑥𝑆))
474adantl 482 . . . . . . . 8 ((𝑥𝑈𝑥𝑆) → 𝑥 ∈ Ring)
4846, 47sylbi 207 . . . . . . 7 (𝑥𝐶𝑥 ∈ Ring)
4948adantl 482 . . . . . 6 ((𝑈𝑉𝑥𝐶) → 𝑥 ∈ Ring)
50 eqid 2626 . . . . . . 7 (Base‘𝑥) = (Base‘𝑥)
5150idrhm 18647 . . . . . 6 (𝑥 ∈ Ring → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
5249, 51syl 17 . . . . 5 ((𝑈𝑉𝑥𝐶) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
53 eqid 2626 . . . . . 6 (Id‘(RingCat‘𝑈)) = (Id‘(RingCat‘𝑈))
54 simpl 473 . . . . . 6 ((𝑈𝑉𝑥𝐶) → 𝑈𝑉)
5510, 11, 53, 54, 14, 50ringcid 41286 . . . . 5 ((𝑈𝑉𝑥𝐶) → ((Id‘(RingCat‘𝑈))‘𝑥) = ( I ↾ (Base‘𝑥)))
5620a1i 11 . . . . . 6 ((𝑈𝑉𝑥𝐶) → 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠)))
57 oveq12 6614 . . . . . . 7 ((𝑟 = 𝑥𝑠 = 𝑥) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑥))
5857adantl 482 . . . . . 6 (((𝑈𝑉𝑥𝐶) ∧ (𝑟 = 𝑥𝑠 = 𝑥)) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑥))
59 simpr 477 . . . . . 6 ((𝑈𝑉𝑥𝐶) → 𝑥𝐶)
60 ovex 6633 . . . . . . 7 (𝑥 RingHom 𝑥) ∈ V
6160a1i 11 . . . . . 6 ((𝑈𝑉𝑥𝐶) → (𝑥 RingHom 𝑥) ∈ V)
6256, 58, 59, 59, 61ovmpt2d 6742 . . . . 5 ((𝑈𝑉𝑥𝐶) → (𝑥𝐽𝑥) = (𝑥 RingHom 𝑥))
6352, 55, 623eltr4d 2719 . . . 4 ((𝑈𝑉𝑥𝐶) → ((Id‘(RingCat‘𝑈))‘𝑥) ∈ (𝑥𝐽𝑥))
64 eqid 2626 . . . . . . . . 9 (comp‘(RingCat‘𝑈)) = (comp‘(RingCat‘𝑈))
6510ringccat 41285 . . . . . . . . . 10 (𝑈𝑉 → (RingCat‘𝑈) ∈ Cat)
6665ad3antrrr 765 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (RingCat‘𝑈) ∈ Cat)
6714adantr 481 . . . . . . . . . 10 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑥 ∈ (Base‘(RingCat‘𝑈)))
6867adantr 481 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → 𝑥 ∈ (Base‘(RingCat‘𝑈)))
6916ad2ant2r 782 . . . . . . . . . 10 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑦 ∈ (Base‘(RingCat‘𝑈)))
7069adantr 481 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → 𝑦 ∈ (Base‘(RingCat‘𝑈)))
713, 1srhmsubclem2 41335 . . . . . . . . . . 11 ((𝑈𝑉𝑧𝐶) → 𝑧 ∈ (Base‘(RingCat‘𝑈)))
7271ad2ant2rl 784 . . . . . . . . . 10 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑧 ∈ (Base‘(RingCat‘𝑈)))
7372adantr 481 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → 𝑧 ∈ (Base‘(RingCat‘𝑈)))
7454adantr 481 . . . . . . . . . . . . . . 15 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑈𝑉)
75 simpl 473 . . . . . . . . . . . . . . . 16 ((𝑦𝐶𝑧𝐶) → 𝑦𝐶)
7659, 75anim12i 589 . . . . . . . . . . . . . . 15 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥𝐶𝑦𝐶))
7774, 76jca 554 . . . . . . . . . . . . . 14 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)))
783, 1, 20srhmsubclem3 41336 . . . . . . . . . . . . . 14 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥𝐽𝑦) = (𝑥(Hom ‘(RingCat‘𝑈))𝑦))
7977, 78syl 17 . . . . . . . . . . . . 13 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥𝐽𝑦) = (𝑥(Hom ‘(RingCat‘𝑈))𝑦))
8079eleq2d 2689 . . . . . . . . . . . 12 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑓 ∈ (𝑥𝐽𝑦) ↔ 𝑓 ∈ (𝑥(Hom ‘(RingCat‘𝑈))𝑦)))
8180biimpcd 239 . . . . . . . . . . 11 (𝑓 ∈ (𝑥𝐽𝑦) → (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑓 ∈ (𝑥(Hom ‘(RingCat‘𝑈))𝑦)))
8281adantr 481 . . . . . . . . . 10 ((𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑓 ∈ (𝑥(Hom ‘(RingCat‘𝑈))𝑦)))
8382impcom 446 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → 𝑓 ∈ (𝑥(Hom ‘(RingCat‘𝑈))𝑦))
843, 1, 20srhmsubclem3 41336 . . . . . . . . . . . . . 14 ((𝑈𝑉 ∧ (𝑦𝐶𝑧𝐶)) → (𝑦𝐽𝑧) = (𝑦(Hom ‘(RingCat‘𝑈))𝑧))
8584adantlr 750 . . . . . . . . . . . . 13 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑦𝐽𝑧) = (𝑦(Hom ‘(RingCat‘𝑈))𝑧))
8685eleq2d 2689 . . . . . . . . . . . 12 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑔 ∈ (𝑦𝐽𝑧) ↔ 𝑔 ∈ (𝑦(Hom ‘(RingCat‘𝑈))𝑧)))
8786biimpd 219 . . . . . . . . . . 11 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑔 ∈ (𝑦𝐽𝑧) → 𝑔 ∈ (𝑦(Hom ‘(RingCat‘𝑈))𝑧)))
8887adantld 483 . . . . . . . . . 10 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → ((𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝑔 ∈ (𝑦(Hom ‘(RingCat‘𝑈))𝑧)))
8988imp 445 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → 𝑔 ∈ (𝑦(Hom ‘(RingCat‘𝑈))𝑧))
9011, 13, 64, 66, 68, 70, 73, 83, 89catcocl 16262 . . . . . . . 8 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCat‘𝑈))𝑧)𝑓) ∈ (𝑥(Hom ‘(RingCat‘𝑈))𝑧))
9110, 11, 74, 13, 67, 72ringchom 41274 . . . . . . . . . 10 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥(Hom ‘(RingCat‘𝑈))𝑧) = (𝑥 RingHom 𝑧))
9291eqcomd 2632 . . . . . . . . 9 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥 RingHom 𝑧) = (𝑥(Hom ‘(RingCat‘𝑈))𝑧))
9392adantr 481 . . . . . . . 8 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑥 RingHom 𝑧) = (𝑥(Hom ‘(RingCat‘𝑈))𝑧))
9490, 93eleqtrrd 2707 . . . . . . 7 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCat‘𝑈))𝑧)𝑓) ∈ (𝑥 RingHom 𝑧))
9520a1i 11 . . . . . . . . 9 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠)))
96 oveq12 6614 . . . . . . . . . 10 ((𝑟 = 𝑥𝑠 = 𝑧) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑧))
9796adantl 482 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑟 = 𝑥𝑠 = 𝑧)) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑧))
9859adantr 481 . . . . . . . . 9 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑥𝐶)
99 simprr 795 . . . . . . . . 9 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑧𝐶)
100 ovex 6633 . . . . . . . . . 10 (𝑥 RingHom 𝑧) ∈ V
101100a1i 11 . . . . . . . . 9 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥 RingHom 𝑧) ∈ V)
10295, 97, 98, 99, 101ovmpt2d 6742 . . . . . . . 8 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥𝐽𝑧) = (𝑥 RingHom 𝑧))
103102adantr 481 . . . . . . 7 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑥𝐽𝑧) = (𝑥 RingHom 𝑧))
10494, 103eleqtrrd 2707 . . . . . 6 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧))
105104ralrimivva 2970 . . . . 5 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧))
106105ralrimivva 2970 . . . 4 ((𝑈𝑉𝑥𝐶) → ∀𝑦𝐶𝑧𝐶𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧))
10763, 106jca 554 . . 3 ((𝑈𝑉𝑥𝐶) → (((Id‘(RingCat‘𝑈))‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝐶𝑧𝐶𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
108107ralrimiva 2965 . 2 (𝑈𝑉 → ∀𝑥𝐶 (((Id‘(RingCat‘𝑈))‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝐶𝑧𝐶𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
10929, 53, 64, 65, 35issubc2 16412 . 2 (𝑈𝑉 → (𝐽 ∈ (Subcat‘(RingCat‘𝑈)) ↔ (𝐽cat (Homf ‘(RingCat‘𝑈)) ∧ ∀𝑥𝐶 (((Id‘(RingCat‘𝑈))‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝐶𝑧𝐶𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCat‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
11045, 108, 109mpbir2and 956 1 (𝑈𝑉𝐽 ∈ (Subcat‘(RingCat‘𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1992  wral 2912  Vcvv 3191  cin 3559  wss 3560  cop 4159   class class class wbr 4618   I cid 4989   × cxp 5077  cres 5081   Fn wfn 5845  cfv 5850  (class class class)co 6605  cmpt2 6607  Basecbs 15776  Hom chom 15868  compcco 15869  Catccat 16241  Idccid 16242  Homf chomf 16243  cat cssc 16383  Subcatcsubc 16385  Ringcrg 18463   RingHom crh 18628  RingCatcringc 41264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-oadd 7510  df-er 7688  df-map 7805  df-pm 7806  df-ixp 7854  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-2 11024  df-3 11025  df-4 11026  df-5 11027  df-6 11028  df-7 11029  df-8 11030  df-9 11031  df-n0 11238  df-z 11323  df-dec 11438  df-uz 11632  df-fz 12266  df-struct 15778  df-ndx 15779  df-slot 15780  df-base 15781  df-sets 15782  df-ress 15783  df-plusg 15870  df-hom 15882  df-cco 15883  df-0g 16018  df-cat 16245  df-cid 16246  df-homf 16247  df-ssc 16386  df-resc 16387  df-subc 16388  df-estrc 16679  df-mgm 17158  df-sgrp 17200  df-mnd 17211  df-mhm 17251  df-grp 17341  df-ghm 17574  df-mgp 18406  df-ur 18418  df-ring 18465  df-rnghom 18631  df-ringc 41266
This theorem is referenced by:  sringcat  41338  crhmsubc  41339  drhmsubc  41341  fldhmsubc  41345
  Copyright terms: Public domain W3C validator