MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1mul3le Structured version   Visualization version   GIF version

Theorem deg1mul3le 23797
Description: Degree of multiplication of a polynomial on the left by a scalar. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
deg1mul3le.d 𝐷 = ( deg1𝑅)
deg1mul3le.p 𝑃 = (Poly1𝑅)
deg1mul3le.k 𝐾 = (Base‘𝑅)
deg1mul3le.b 𝐵 = (Base‘𝑃)
deg1mul3le.t · = (.r𝑃)
deg1mul3le.a 𝐴 = (algSc‘𝑃)
Assertion
Ref Expression
deg1mul3le ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (𝐷‘((𝐴𝐹) · 𝐺)) ≤ (𝐷𝐺))

Proof of Theorem deg1mul3le
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 deg1mul3le.p . . . . . . . 8 𝑃 = (Poly1𝑅)
21ply1ring 19550 . . . . . . 7 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
323ad2ant1 1080 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → 𝑃 ∈ Ring)
4 deg1mul3le.a . . . . . . . . 9 𝐴 = (algSc‘𝑃)
5 deg1mul3le.k . . . . . . . . 9 𝐾 = (Base‘𝑅)
6 deg1mul3le.b . . . . . . . . 9 𝐵 = (Base‘𝑃)
71, 4, 5, 6ply1sclf 19587 . . . . . . . 8 (𝑅 ∈ Ring → 𝐴:𝐾𝐵)
873ad2ant1 1080 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → 𝐴:𝐾𝐵)
9 simp2 1060 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → 𝐹𝐾)
108, 9ffvelrnd 6321 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (𝐴𝐹) ∈ 𝐵)
11 simp3 1061 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → 𝐺𝐵)
12 deg1mul3le.t . . . . . . 7 · = (.r𝑃)
136, 12ringcl 18493 . . . . . 6 ((𝑃 ∈ Ring ∧ (𝐴𝐹) ∈ 𝐵𝐺𝐵) → ((𝐴𝐹) · 𝐺) ∈ 𝐵)
143, 10, 11, 13syl3anc 1323 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → ((𝐴𝐹) · 𝐺) ∈ 𝐵)
15 eqid 2621 . . . . . 6 (coe1‘((𝐴𝐹) · 𝐺)) = (coe1‘((𝐴𝐹) · 𝐺))
1615, 6, 1, 5coe1f 19513 . . . . 5 (((𝐴𝐹) · 𝐺) ∈ 𝐵 → (coe1‘((𝐴𝐹) · 𝐺)):ℕ0𝐾)
1714, 16syl 17 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (coe1‘((𝐴𝐹) · 𝐺)):ℕ0𝐾)
18 eldifi 3715 . . . . . 6 (𝑎 ∈ (ℕ0 ∖ ((coe1𝐺) supp (0g𝑅))) → 𝑎 ∈ ℕ0)
19 simpl1 1062 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ ℕ0) → 𝑅 ∈ Ring)
20 simpl2 1063 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ ℕ0) → 𝐹𝐾)
21 simpl3 1064 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ ℕ0) → 𝐺𝐵)
22 simpr 477 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ ℕ0) → 𝑎 ∈ ℕ0)
23 eqid 2621 . . . . . . . 8 (.r𝑅) = (.r𝑅)
241, 6, 5, 4, 12, 23coe1sclmulfv 19585 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ ℕ0) → ((coe1‘((𝐴𝐹) · 𝐺))‘𝑎) = (𝐹(.r𝑅)((coe1𝐺)‘𝑎)))
2519, 20, 21, 22, 24syl121anc 1328 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ ℕ0) → ((coe1‘((𝐴𝐹) · 𝐺))‘𝑎) = (𝐹(.r𝑅)((coe1𝐺)‘𝑎)))
2618, 25sylan2 491 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ (ℕ0 ∖ ((coe1𝐺) supp (0g𝑅)))) → ((coe1‘((𝐴𝐹) · 𝐺))‘𝑎) = (𝐹(.r𝑅)((coe1𝐺)‘𝑎)))
27 eqid 2621 . . . . . . . . 9 (coe1𝐺) = (coe1𝐺)
2827, 6, 1, 5coe1f 19513 . . . . . . . 8 (𝐺𝐵 → (coe1𝐺):ℕ0𝐾)
29283ad2ant3 1082 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (coe1𝐺):ℕ0𝐾)
30 ssid 3608 . . . . . . . 8 ((coe1𝐺) supp (0g𝑅)) ⊆ ((coe1𝐺) supp (0g𝑅))
3130a1i 11 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → ((coe1𝐺) supp (0g𝑅)) ⊆ ((coe1𝐺) supp (0g𝑅)))
32 nn0ex 11250 . . . . . . . 8 0 ∈ V
3332a1i 11 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → ℕ0 ∈ V)
34 fvex 6163 . . . . . . . 8 (0g𝑅) ∈ V
3534a1i 11 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (0g𝑅) ∈ V)
3629, 31, 33, 35suppssr 7278 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ (ℕ0 ∖ ((coe1𝐺) supp (0g𝑅)))) → ((coe1𝐺)‘𝑎) = (0g𝑅))
3736oveq2d 6626 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ (ℕ0 ∖ ((coe1𝐺) supp (0g𝑅)))) → (𝐹(.r𝑅)((coe1𝐺)‘𝑎)) = (𝐹(.r𝑅)(0g𝑅)))
38 eqid 2621 . . . . . . . 8 (0g𝑅) = (0g𝑅)
395, 23, 38ringrz 18520 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐾) → (𝐹(.r𝑅)(0g𝑅)) = (0g𝑅))
40393adant3 1079 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (𝐹(.r𝑅)(0g𝑅)) = (0g𝑅))
4140adantr 481 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ (ℕ0 ∖ ((coe1𝐺) supp (0g𝑅)))) → (𝐹(.r𝑅)(0g𝑅)) = (0g𝑅))
4226, 37, 413eqtrd 2659 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ (ℕ0 ∖ ((coe1𝐺) supp (0g𝑅)))) → ((coe1‘((𝐴𝐹) · 𝐺))‘𝑎) = (0g𝑅))
4317, 42suppss 7277 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → ((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)) ⊆ ((coe1𝐺) supp (0g𝑅)))
44 suppssdm 7260 . . . . 5 ((coe1𝐺) supp (0g𝑅)) ⊆ dom (coe1𝐺)
45 fdm 6013 . . . . . 6 ((coe1𝐺):ℕ0𝐾 → dom (coe1𝐺) = ℕ0)
4629, 45syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → dom (coe1𝐺) = ℕ0)
4744, 46syl5sseq 3637 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → ((coe1𝐺) supp (0g𝑅)) ⊆ ℕ0)
48 nn0ssre 11248 . . . . 5 0 ⊆ ℝ
49 ressxr 10035 . . . . 5 ℝ ⊆ ℝ*
5048, 49sstri 3596 . . . 4 0 ⊆ ℝ*
5147, 50syl6ss 3599 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → ((coe1𝐺) supp (0g𝑅)) ⊆ ℝ*)
52 supxrss 12113 . . 3 ((((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)) ⊆ ((coe1𝐺) supp (0g𝑅)) ∧ ((coe1𝐺) supp (0g𝑅)) ⊆ ℝ*) → sup(((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)), ℝ*, < ) ≤ sup(((coe1𝐺) supp (0g𝑅)), ℝ*, < ))
5343, 51, 52syl2anc 692 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → sup(((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)), ℝ*, < ) ≤ sup(((coe1𝐺) supp (0g𝑅)), ℝ*, < ))
54 deg1mul3le.d . . . 4 𝐷 = ( deg1𝑅)
5554, 1, 6, 38, 15deg1val 23777 . . 3 (((𝐴𝐹) · 𝐺) ∈ 𝐵 → (𝐷‘((𝐴𝐹) · 𝐺)) = sup(((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)), ℝ*, < ))
5614, 55syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (𝐷‘((𝐴𝐹) · 𝐺)) = sup(((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)), ℝ*, < ))
5754, 1, 6, 38, 27deg1val 23777 . . 3 (𝐺𝐵 → (𝐷𝐺) = sup(((coe1𝐺) supp (0g𝑅)), ℝ*, < ))
58573ad2ant3 1082 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (𝐷𝐺) = sup(((coe1𝐺) supp (0g𝑅)), ℝ*, < ))
5953, 56, 583brtr4d 4650 1 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (𝐷‘((𝐴𝐹) · 𝐺)) ≤ (𝐷𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  Vcvv 3189  cdif 3556  wss 3559   class class class wbr 4618  dom cdm 5079  wf 5848  cfv 5852  (class class class)co 6610   supp csupp 7247  supcsup 8298  cr 9887  *cxr 10025   < clt 10026  cle 10027  0cn0 11244  Basecbs 15792  .rcmulr 15874  0gc0g 16032  Ringcrg 18479  algSccascl 19243  Poly1cpl1 19479  coe1cco1 19480   deg1 cdg1 23735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966  ax-addf 9967  ax-mulf 9968
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-ofr 6858  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-ixp 7861  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fsupp 8228  df-sup 8300  df-oi 8367  df-card 8717  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-fz 12277  df-fzo 12415  df-seq 12750  df-hash 13066  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-starv 15888  df-sca 15889  df-vsca 15890  df-tset 15892  df-ple 15893  df-ds 15896  df-unif 15897  df-0g 16034  df-gsum 16035  df-mre 16178  df-mrc 16179  df-acs 16181  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-mhm 17267  df-submnd 17268  df-grp 17357  df-minusg 17358  df-sbg 17359  df-mulg 17473  df-subg 17523  df-ghm 17590  df-cntz 17682  df-cmn 18127  df-abl 18128  df-mgp 18422  df-ur 18434  df-ring 18481  df-cring 18482  df-subrg 18710  df-lmod 18797  df-lss 18865  df-ascl 19246  df-psr 19288  df-mvr 19289  df-mpl 19290  df-opsr 19292  df-psr1 19482  df-vr1 19483  df-ply1 19484  df-coe1 19485  df-cnfld 19679  df-mdeg 23736  df-deg1 23737
This theorem is referenced by:  hbtlem2  37210
  Copyright terms: Public domain W3C validator