![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uzm1 | Structured version Visualization version GIF version |
Description: Choices for an element of an upper interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
uzm1 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ≥‘𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzel2 11773 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
2 | 1 | a1d 25 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (¬ 𝑁 = 𝑀 → 𝑀 ∈ ℤ)) |
3 | eluzelz 11778 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
4 | peano2zm 11501 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 − 1) ∈ ℤ) |
6 | 5 | a1d 25 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (¬ 𝑁 = 𝑀 → (𝑁 − 1) ∈ ℤ)) |
7 | df-ne 2865 | . . . . . 6 ⊢ (𝑁 ≠ 𝑀 ↔ ¬ 𝑁 = 𝑀) | |
8 | eluzle 11781 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) | |
9 | 1 | zred 11563 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℝ) |
10 | eluzelre 11779 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) | |
11 | 9, 10 | ltlend 10263 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 < 𝑁 ↔ (𝑀 ≤ 𝑁 ∧ 𝑁 ≠ 𝑀))) |
12 | 11 | biimprd 238 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑀 ≤ 𝑁 ∧ 𝑁 ≠ 𝑀) → 𝑀 < 𝑁)) |
13 | 8, 12 | mpand 713 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 ≠ 𝑀 → 𝑀 < 𝑁)) |
14 | 7, 13 | syl5bir 233 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (¬ 𝑁 = 𝑀 → 𝑀 < 𝑁)) |
15 | zltlem1 11511 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) | |
16 | 1, 3, 15 | syl2anc 696 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) |
17 | 14, 16 | sylibd 229 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (¬ 𝑁 = 𝑀 → 𝑀 ≤ (𝑁 − 1))) |
18 | 2, 6, 17 | 3jcad 1316 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (¬ 𝑁 = 𝑀 → (𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 − 1)))) |
19 | eluz2 11774 | . . 3 ⊢ ((𝑁 − 1) ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ 𝑀 ≤ (𝑁 − 1))) | |
20 | 18, 19 | syl6ibr 242 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (¬ 𝑁 = 𝑀 → (𝑁 − 1) ∈ (ℤ≥‘𝑀))) |
21 | 20 | orrd 392 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ≥‘𝑀))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 ∧ w3a 1072 = wceq 1564 ∈ wcel 2071 ≠ wne 2864 class class class wbr 4728 ‘cfv 5969 (class class class)co 6733 1c1 10018 < clt 10155 ≤ cle 10156 − cmin 10347 ℤcz 11458 ℤ≥cuz 11768 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1818 ax-5 1920 ax-6 1986 ax-7 2022 ax-8 2073 ax-9 2080 ax-10 2100 ax-11 2115 ax-12 2128 ax-13 2323 ax-ext 2672 ax-sep 4857 ax-nul 4865 ax-pow 4916 ax-pr 4979 ax-un 7034 ax-cnex 10073 ax-resscn 10074 ax-1cn 10075 ax-icn 10076 ax-addcl 10077 ax-addrcl 10078 ax-mulcl 10079 ax-mulrcl 10080 ax-mulcom 10081 ax-addass 10082 ax-mulass 10083 ax-distr 10084 ax-i2m1 10085 ax-1ne0 10086 ax-1rid 10087 ax-rnegex 10088 ax-rrecex 10089 ax-cnre 10090 ax-pre-lttri 10091 ax-pre-lttrn 10092 ax-pre-ltadd 10093 ax-pre-mulgt0 10094 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1567 df-ex 1786 df-nf 1791 df-sb 1979 df-eu 2543 df-mo 2544 df-clab 2679 df-cleq 2685 df-clel 2688 df-nfc 2823 df-ne 2865 df-nel 2968 df-ral 2987 df-rex 2988 df-reu 2989 df-rab 2991 df-v 3274 df-sbc 3510 df-csb 3608 df-dif 3651 df-un 3653 df-in 3655 df-ss 3662 df-pss 3664 df-nul 3992 df-if 4163 df-pw 4236 df-sn 4254 df-pr 4256 df-tp 4258 df-op 4260 df-uni 4513 df-iun 4598 df-br 4729 df-opab 4789 df-mpt 4806 df-tr 4829 df-id 5096 df-eprel 5101 df-po 5107 df-so 5108 df-fr 5145 df-we 5147 df-xp 5192 df-rel 5193 df-cnv 5194 df-co 5195 df-dm 5196 df-rn 5197 df-res 5198 df-ima 5199 df-pred 5761 df-ord 5807 df-on 5808 df-lim 5809 df-suc 5810 df-iota 5932 df-fun 5971 df-fn 5972 df-f 5973 df-f1 5974 df-fo 5975 df-f1o 5976 df-fv 5977 df-riota 6694 df-ov 6736 df-oprab 6737 df-mpt2 6738 df-om 7151 df-wrecs 7495 df-recs 7556 df-rdg 7594 df-er 7830 df-en 8041 df-dom 8042 df-sdom 8043 df-pnf 10157 df-mnf 10158 df-xr 10159 df-ltxr 10160 df-le 10161 df-sub 10349 df-neg 10350 df-nn 11102 df-n0 11374 df-z 11459 df-uz 11769 |
This theorem is referenced by: uzp1 11803 fzm1 12502 hashfzo 13297 iserex 14475 ntrivcvg 14717 ntrivcvgtail 14720 |
Copyright terms: Public domain | W3C validator |