MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrivcvgtail Structured version   Visualization version   GIF version

Theorem ntrivcvgtail 14802
Description: A tail of a non-trivially convergent sequence converges non-trivially. (Contributed by Scott Fenton, 20-Dec-2017.)
Hypotheses
Ref Expression
ntrivcvgtail.1 𝑍 = (ℤ𝑀)
ntrivcvgtail.2 (𝜑𝑁𝑍)
ntrivcvgtail.3 (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋)
ntrivcvgtail.4 (𝜑𝑋 ≠ 0)
ntrivcvgtail.5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
Assertion
Ref Expression
ntrivcvgtail (𝜑 → (( ⇝ ‘seq𝑁( · , 𝐹)) ≠ 0 ∧ seq𝑁( · , 𝐹) ⇝ ( ⇝ ‘seq𝑁( · , 𝐹))))
Distinct variable groups:   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁   𝑘,𝑍
Allowed substitution hint:   𝑋(𝑘)

Proof of Theorem ntrivcvgtail
StepHypRef Expression
1 fclim 14454 . . . . . . . 8 ⇝ :dom ⇝ ⟶ℂ
2 ffun 6197 . . . . . . . 8 ( ⇝ :dom ⇝ ⟶ℂ → Fun ⇝ )
31, 2ax-mp 5 . . . . . . 7 Fun ⇝
4 ntrivcvgtail.3 . . . . . . 7 (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋)
5 funbrfv 6383 . . . . . . 7 (Fun ⇝ → (seq𝑀( · , 𝐹) ⇝ 𝑋 → ( ⇝ ‘seq𝑀( · , 𝐹)) = 𝑋))
63, 4, 5mpsyl 68 . . . . . 6 (𝜑 → ( ⇝ ‘seq𝑀( · , 𝐹)) = 𝑋)
7 ntrivcvgtail.4 . . . . . 6 (𝜑𝑋 ≠ 0)
86, 7eqnetrd 2987 . . . . 5 (𝜑 → ( ⇝ ‘seq𝑀( · , 𝐹)) ≠ 0)
94, 6breqtrrd 4820 . . . . 5 (𝜑 → seq𝑀( · , 𝐹) ⇝ ( ⇝ ‘seq𝑀( · , 𝐹)))
108, 9jca 555 . . . 4 (𝜑 → (( ⇝ ‘seq𝑀( · , 𝐹)) ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ ( ⇝ ‘seq𝑀( · , 𝐹))))
1110adantr 472 . . 3 ((𝜑𝑁 = 𝑀) → (( ⇝ ‘seq𝑀( · , 𝐹)) ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ ( ⇝ ‘seq𝑀( · , 𝐹))))
12 seqeq1 12969 . . . . . . 7 (𝑁 = 𝑀 → seq𝑁( · , 𝐹) = seq𝑀( · , 𝐹))
1312fveq2d 6344 . . . . . 6 (𝑁 = 𝑀 → ( ⇝ ‘seq𝑁( · , 𝐹)) = ( ⇝ ‘seq𝑀( · , 𝐹)))
1413neeq1d 2979 . . . . 5 (𝑁 = 𝑀 → (( ⇝ ‘seq𝑁( · , 𝐹)) ≠ 0 ↔ ( ⇝ ‘seq𝑀( · , 𝐹)) ≠ 0))
1512, 13breq12d 4805 . . . . 5 (𝑁 = 𝑀 → (seq𝑁( · , 𝐹) ⇝ ( ⇝ ‘seq𝑁( · , 𝐹)) ↔ seq𝑀( · , 𝐹) ⇝ ( ⇝ ‘seq𝑀( · , 𝐹))))
1614, 15anbi12d 749 . . . 4 (𝑁 = 𝑀 → ((( ⇝ ‘seq𝑁( · , 𝐹)) ≠ 0 ∧ seq𝑁( · , 𝐹) ⇝ ( ⇝ ‘seq𝑁( · , 𝐹))) ↔ (( ⇝ ‘seq𝑀( · , 𝐹)) ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ ( ⇝ ‘seq𝑀( · , 𝐹)))))
1716adantl 473 . . 3 ((𝜑𝑁 = 𝑀) → ((( ⇝ ‘seq𝑁( · , 𝐹)) ≠ 0 ∧ seq𝑁( · , 𝐹) ⇝ ( ⇝ ‘seq𝑁( · , 𝐹))) ↔ (( ⇝ ‘seq𝑀( · , 𝐹)) ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ ( ⇝ ‘seq𝑀( · , 𝐹)))))
1811, 17mpbird 247 . 2 ((𝜑𝑁 = 𝑀) → (( ⇝ ‘seq𝑁( · , 𝐹)) ≠ 0 ∧ seq𝑁( · , 𝐹) ⇝ ( ⇝ ‘seq𝑁( · , 𝐹))))
19 ntrivcvgtail.1 . . . . . 6 𝑍 = (ℤ𝑀)
20 simpr 479 . . . . . . 7 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (𝑁 − 1) ∈ (ℤ𝑀))
2120, 19syl6eleqr 2838 . . . . . 6 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (𝑁 − 1) ∈ 𝑍)
22 ntrivcvgtail.5 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2322adantlr 753 . . . . . 6 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
244adantr 472 . . . . . 6 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → seq𝑀( · , 𝐹) ⇝ 𝑋)
257adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → 𝑋 ≠ 0)
2619, 21, 24, 25, 23ntrivcvgfvn0 14801 . . . . . 6 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (seq𝑀( · , 𝐹)‘(𝑁 − 1)) ≠ 0)
2719, 21, 23, 24, 26clim2div 14791 . . . . 5 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → seq((𝑁 − 1) + 1)( · , 𝐹) ⇝ (𝑋 / (seq𝑀( · , 𝐹)‘(𝑁 − 1))))
28 funbrfv 6383 . . . . 5 (Fun ⇝ → (seq((𝑁 − 1) + 1)( · , 𝐹) ⇝ (𝑋 / (seq𝑀( · , 𝐹)‘(𝑁 − 1))) → ( ⇝ ‘seq((𝑁 − 1) + 1)( · , 𝐹)) = (𝑋 / (seq𝑀( · , 𝐹)‘(𝑁 − 1)))))
293, 27, 28mpsyl 68 . . . 4 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → ( ⇝ ‘seq((𝑁 − 1) + 1)( · , 𝐹)) = (𝑋 / (seq𝑀( · , 𝐹)‘(𝑁 − 1))))
30 climcl 14400 . . . . . . 7 (seq𝑀( · , 𝐹) ⇝ 𝑋𝑋 ∈ ℂ)
314, 30syl 17 . . . . . 6 (𝜑𝑋 ∈ ℂ)
3231adantr 472 . . . . 5 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → 𝑋 ∈ ℂ)
33 ntrivcvgtail.2 . . . . . . . . 9 (𝜑𝑁𝑍)
34 eluzel2 11855 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
3534, 19eleq2s 2845 . . . . . . . . 9 (𝑁𝑍𝑀 ∈ ℤ)
3633, 35syl 17 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
3719, 36, 22prodf 14789 . . . . . . 7 (𝜑 → seq𝑀( · , 𝐹):𝑍⟶ℂ)
3819feq2i 6186 . . . . . . 7 (seq𝑀( · , 𝐹):𝑍⟶ℂ ↔ seq𝑀( · , 𝐹):(ℤ𝑀)⟶ℂ)
3937, 38sylib 208 . . . . . 6 (𝜑 → seq𝑀( · , 𝐹):(ℤ𝑀)⟶ℂ)
4039ffvelrnda 6510 . . . . 5 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (seq𝑀( · , 𝐹)‘(𝑁 − 1)) ∈ ℂ)
4132, 40, 25, 26divne0d 10980 . . . 4 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (𝑋 / (seq𝑀( · , 𝐹)‘(𝑁 − 1))) ≠ 0)
4229, 41eqnetrd 2987 . . 3 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → ( ⇝ ‘seq((𝑁 − 1) + 1)( · , 𝐹)) ≠ 0)
4327, 29breqtrrd 4820 . . 3 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → seq((𝑁 − 1) + 1)( · , 𝐹) ⇝ ( ⇝ ‘seq((𝑁 − 1) + 1)( · , 𝐹)))
44 uzssz 11870 . . . . . . . . . . . 12 (ℤ𝑀) ⊆ ℤ
4519, 44eqsstri 3764 . . . . . . . . . . 11 𝑍 ⊆ ℤ
4645, 33sseldi 3730 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
4746zcnd 11646 . . . . . . . . 9 (𝜑𝑁 ∈ ℂ)
4847adantr 472 . . . . . . . 8 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → 𝑁 ∈ ℂ)
49 1cnd 10219 . . . . . . . 8 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → 1 ∈ ℂ)
5048, 49npcand 10559 . . . . . . 7 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → ((𝑁 − 1) + 1) = 𝑁)
5150seqeq1d 12972 . . . . . 6 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → seq((𝑁 − 1) + 1)( · , 𝐹) = seq𝑁( · , 𝐹))
5251fveq2d 6344 . . . . 5 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → ( ⇝ ‘seq((𝑁 − 1) + 1)( · , 𝐹)) = ( ⇝ ‘seq𝑁( · , 𝐹)))
5352neeq1d 2979 . . . 4 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (( ⇝ ‘seq((𝑁 − 1) + 1)( · , 𝐹)) ≠ 0 ↔ ( ⇝ ‘seq𝑁( · , 𝐹)) ≠ 0))
5451, 52breq12d 4805 . . . 4 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (seq((𝑁 − 1) + 1)( · , 𝐹) ⇝ ( ⇝ ‘seq((𝑁 − 1) + 1)( · , 𝐹)) ↔ seq𝑁( · , 𝐹) ⇝ ( ⇝ ‘seq𝑁( · , 𝐹))))
5553, 54anbi12d 749 . . 3 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → ((( ⇝ ‘seq((𝑁 − 1) + 1)( · , 𝐹)) ≠ 0 ∧ seq((𝑁 − 1) + 1)( · , 𝐹) ⇝ ( ⇝ ‘seq((𝑁 − 1) + 1)( · , 𝐹))) ↔ (( ⇝ ‘seq𝑁( · , 𝐹)) ≠ 0 ∧ seq𝑁( · , 𝐹) ⇝ ( ⇝ ‘seq𝑁( · , 𝐹)))))
5642, 43, 55mpbi2and 994 . 2 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (( ⇝ ‘seq𝑁( · , 𝐹)) ≠ 0 ∧ seq𝑁( · , 𝐹) ⇝ ( ⇝ ‘seq𝑁( · , 𝐹))))
5733, 19syl6eleq 2837 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
58 uzm1 11882 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ𝑀)))
5957, 58syl 17 . 2 (𝜑 → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ𝑀)))
6018, 56, 59mpjaodan 862 1 (𝜑 → (( ⇝ ‘seq𝑁( · , 𝐹)) ≠ 0 ∧ seq𝑁( · , 𝐹) ⇝ ( ⇝ ‘seq𝑁( · , 𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383   = wceq 1620  wcel 2127  wne 2920   class class class wbr 4792  dom cdm 5254  Fun wfun 6031  wf 6033  cfv 6037  (class class class)co 6801  cc 10097  0cc0 10099  1c1 10100   + caddc 10102   · cmul 10104  cmin 10429   / cdiv 10847  cz 11540  cuz 11850  seqcseq 12966  cli 14385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-inf2 8699  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176  ax-pre-sup 10177
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-1st 7321  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-er 7899  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8501  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-div 10848  df-nn 11184  df-2 11242  df-3 11243  df-n0 11456  df-z 11541  df-uz 11851  df-rp 11997  df-fz 12491  df-seq 12967  df-exp 13026  df-cj 14009  df-re 14010  df-im 14011  df-sqrt 14145  df-abs 14146  df-clim 14389
This theorem is referenced by:  ntrivcvgmullem  14803
  Copyright terms: Public domain W3C validator