MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrivcvgtail Structured version   Visualization version   GIF version

Theorem ntrivcvgtail 14557
Description: A tail of a non-trivially convergent sequence converges non-trivially. (Contributed by Scott Fenton, 20-Dec-2017.)
Hypotheses
Ref Expression
ntrivcvgtail.1 𝑍 = (ℤ𝑀)
ntrivcvgtail.2 (𝜑𝑁𝑍)
ntrivcvgtail.3 (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋)
ntrivcvgtail.4 (𝜑𝑋 ≠ 0)
ntrivcvgtail.5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
Assertion
Ref Expression
ntrivcvgtail (𝜑 → (( ⇝ ‘seq𝑁( · , 𝐹)) ≠ 0 ∧ seq𝑁( · , 𝐹) ⇝ ( ⇝ ‘seq𝑁( · , 𝐹))))
Distinct variable groups:   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁   𝑘,𝑍
Allowed substitution hint:   𝑋(𝑘)

Proof of Theorem ntrivcvgtail
StepHypRef Expression
1 fclim 14218 . . . . . . . 8 ⇝ :dom ⇝ ⟶ℂ
2 ffun 6005 . . . . . . . 8 ( ⇝ :dom ⇝ ⟶ℂ → Fun ⇝ )
31, 2ax-mp 5 . . . . . . 7 Fun ⇝
4 ntrivcvgtail.3 . . . . . . 7 (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋)
5 funbrfv 6191 . . . . . . 7 (Fun ⇝ → (seq𝑀( · , 𝐹) ⇝ 𝑋 → ( ⇝ ‘seq𝑀( · , 𝐹)) = 𝑋))
63, 4, 5mpsyl 68 . . . . . 6 (𝜑 → ( ⇝ ‘seq𝑀( · , 𝐹)) = 𝑋)
7 ntrivcvgtail.4 . . . . . 6 (𝜑𝑋 ≠ 0)
86, 7eqnetrd 2857 . . . . 5 (𝜑 → ( ⇝ ‘seq𝑀( · , 𝐹)) ≠ 0)
94, 6breqtrrd 4641 . . . . 5 (𝜑 → seq𝑀( · , 𝐹) ⇝ ( ⇝ ‘seq𝑀( · , 𝐹)))
108, 9jca 554 . . . 4 (𝜑 → (( ⇝ ‘seq𝑀( · , 𝐹)) ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ ( ⇝ ‘seq𝑀( · , 𝐹))))
1110adantr 481 . . 3 ((𝜑𝑁 = 𝑀) → (( ⇝ ‘seq𝑀( · , 𝐹)) ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ ( ⇝ ‘seq𝑀( · , 𝐹))))
12 seqeq1 12744 . . . . . . 7 (𝑁 = 𝑀 → seq𝑁( · , 𝐹) = seq𝑀( · , 𝐹))
1312fveq2d 6152 . . . . . 6 (𝑁 = 𝑀 → ( ⇝ ‘seq𝑁( · , 𝐹)) = ( ⇝ ‘seq𝑀( · , 𝐹)))
1413neeq1d 2849 . . . . 5 (𝑁 = 𝑀 → (( ⇝ ‘seq𝑁( · , 𝐹)) ≠ 0 ↔ ( ⇝ ‘seq𝑀( · , 𝐹)) ≠ 0))
1512, 13breq12d 4626 . . . . 5 (𝑁 = 𝑀 → (seq𝑁( · , 𝐹) ⇝ ( ⇝ ‘seq𝑁( · , 𝐹)) ↔ seq𝑀( · , 𝐹) ⇝ ( ⇝ ‘seq𝑀( · , 𝐹))))
1614, 15anbi12d 746 . . . 4 (𝑁 = 𝑀 → ((( ⇝ ‘seq𝑁( · , 𝐹)) ≠ 0 ∧ seq𝑁( · , 𝐹) ⇝ ( ⇝ ‘seq𝑁( · , 𝐹))) ↔ (( ⇝ ‘seq𝑀( · , 𝐹)) ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ ( ⇝ ‘seq𝑀( · , 𝐹)))))
1716adantl 482 . . 3 ((𝜑𝑁 = 𝑀) → ((( ⇝ ‘seq𝑁( · , 𝐹)) ≠ 0 ∧ seq𝑁( · , 𝐹) ⇝ ( ⇝ ‘seq𝑁( · , 𝐹))) ↔ (( ⇝ ‘seq𝑀( · , 𝐹)) ≠ 0 ∧ seq𝑀( · , 𝐹) ⇝ ( ⇝ ‘seq𝑀( · , 𝐹)))))
1811, 17mpbird 247 . 2 ((𝜑𝑁 = 𝑀) → (( ⇝ ‘seq𝑁( · , 𝐹)) ≠ 0 ∧ seq𝑁( · , 𝐹) ⇝ ( ⇝ ‘seq𝑁( · , 𝐹))))
19 ntrivcvgtail.1 . . . . . 6 𝑍 = (ℤ𝑀)
20 simpr 477 . . . . . . 7 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (𝑁 − 1) ∈ (ℤ𝑀))
2120, 19syl6eleqr 2709 . . . . . 6 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (𝑁 − 1) ∈ 𝑍)
22 ntrivcvgtail.5 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2322adantlr 750 . . . . . 6 (((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
244adantr 481 . . . . . 6 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → seq𝑀( · , 𝐹) ⇝ 𝑋)
257adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → 𝑋 ≠ 0)
2619, 21, 24, 25, 23ntrivcvgfvn0 14556 . . . . . 6 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (seq𝑀( · , 𝐹)‘(𝑁 − 1)) ≠ 0)
2719, 21, 23, 24, 26clim2div 14546 . . . . 5 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → seq((𝑁 − 1) + 1)( · , 𝐹) ⇝ (𝑋 / (seq𝑀( · , 𝐹)‘(𝑁 − 1))))
28 funbrfv 6191 . . . . 5 (Fun ⇝ → (seq((𝑁 − 1) + 1)( · , 𝐹) ⇝ (𝑋 / (seq𝑀( · , 𝐹)‘(𝑁 − 1))) → ( ⇝ ‘seq((𝑁 − 1) + 1)( · , 𝐹)) = (𝑋 / (seq𝑀( · , 𝐹)‘(𝑁 − 1)))))
293, 27, 28mpsyl 68 . . . 4 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → ( ⇝ ‘seq((𝑁 − 1) + 1)( · , 𝐹)) = (𝑋 / (seq𝑀( · , 𝐹)‘(𝑁 − 1))))
30 climcl 14164 . . . . . . 7 (seq𝑀( · , 𝐹) ⇝ 𝑋𝑋 ∈ ℂ)
314, 30syl 17 . . . . . 6 (𝜑𝑋 ∈ ℂ)
3231adantr 481 . . . . 5 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → 𝑋 ∈ ℂ)
33 ntrivcvgtail.2 . . . . . . . . 9 (𝜑𝑁𝑍)
34 eluzel2 11636 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
3534, 19eleq2s 2716 . . . . . . . . 9 (𝑁𝑍𝑀 ∈ ℤ)
3633, 35syl 17 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
3719, 36, 22prodf 14544 . . . . . . 7 (𝜑 → seq𝑀( · , 𝐹):𝑍⟶ℂ)
3819feq2i 5994 . . . . . . 7 (seq𝑀( · , 𝐹):𝑍⟶ℂ ↔ seq𝑀( · , 𝐹):(ℤ𝑀)⟶ℂ)
3937, 38sylib 208 . . . . . 6 (𝜑 → seq𝑀( · , 𝐹):(ℤ𝑀)⟶ℂ)
4039ffvelrnda 6315 . . . . 5 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (seq𝑀( · , 𝐹)‘(𝑁 − 1)) ∈ ℂ)
4132, 40, 25, 26divne0d 10761 . . . 4 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (𝑋 / (seq𝑀( · , 𝐹)‘(𝑁 − 1))) ≠ 0)
4229, 41eqnetrd 2857 . . 3 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → ( ⇝ ‘seq((𝑁 − 1) + 1)( · , 𝐹)) ≠ 0)
4327, 29breqtrrd 4641 . . 3 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → seq((𝑁 − 1) + 1)( · , 𝐹) ⇝ ( ⇝ ‘seq((𝑁 − 1) + 1)( · , 𝐹)))
44 uzssz 11651 . . . . . . . . . . . 12 (ℤ𝑀) ⊆ ℤ
4519, 44eqsstri 3614 . . . . . . . . . . 11 𝑍 ⊆ ℤ
4645, 33sseldi 3581 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
4746zcnd 11427 . . . . . . . . 9 (𝜑𝑁 ∈ ℂ)
4847adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → 𝑁 ∈ ℂ)
49 1cnd 10000 . . . . . . . 8 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → 1 ∈ ℂ)
5048, 49npcand 10340 . . . . . . 7 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → ((𝑁 − 1) + 1) = 𝑁)
5150seqeq1d 12747 . . . . . 6 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → seq((𝑁 − 1) + 1)( · , 𝐹) = seq𝑁( · , 𝐹))
5251fveq2d 6152 . . . . 5 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → ( ⇝ ‘seq((𝑁 − 1) + 1)( · , 𝐹)) = ( ⇝ ‘seq𝑁( · , 𝐹)))
5352neeq1d 2849 . . . 4 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (( ⇝ ‘seq((𝑁 − 1) + 1)( · , 𝐹)) ≠ 0 ↔ ( ⇝ ‘seq𝑁( · , 𝐹)) ≠ 0))
5451, 52breq12d 4626 . . . 4 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (seq((𝑁 − 1) + 1)( · , 𝐹) ⇝ ( ⇝ ‘seq((𝑁 − 1) + 1)( · , 𝐹)) ↔ seq𝑁( · , 𝐹) ⇝ ( ⇝ ‘seq𝑁( · , 𝐹))))
5553, 54anbi12d 746 . . 3 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → ((( ⇝ ‘seq((𝑁 − 1) + 1)( · , 𝐹)) ≠ 0 ∧ seq((𝑁 − 1) + 1)( · , 𝐹) ⇝ ( ⇝ ‘seq((𝑁 − 1) + 1)( · , 𝐹))) ↔ (( ⇝ ‘seq𝑁( · , 𝐹)) ≠ 0 ∧ seq𝑁( · , 𝐹) ⇝ ( ⇝ ‘seq𝑁( · , 𝐹)))))
5642, 43, 55mpbi2and 955 . 2 ((𝜑 ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (( ⇝ ‘seq𝑁( · , 𝐹)) ≠ 0 ∧ seq𝑁( · , 𝐹) ⇝ ( ⇝ ‘seq𝑁( · , 𝐹))))
5733, 19syl6eleq 2708 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
58 uzm1 11662 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ𝑀)))
5957, 58syl 17 . 2 (𝜑 → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ𝑀)))
6018, 56, 59mpjaodan 826 1 (𝜑 → (( ⇝ ‘seq𝑁( · , 𝐹)) ≠ 0 ∧ seq𝑁( · , 𝐹) ⇝ ( ⇝ ‘seq𝑁( · , 𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987  wne 2790   class class class wbr 4613  dom cdm 5074  Fun wfun 5841  wf 5843  cfv 5847  (class class class)co 6604  cc 9878  0cc0 9880  1c1 9881   + caddc 9883   · cmul 9885  cmin 10210   / cdiv 10628  cz 11321  cuz 11631  seqcseq 12741  cli 14149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fz 12269  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153
This theorem is referenced by:  ntrivcvgmullem  14558
  Copyright terms: Public domain W3C validator