MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonedalem3a Structured version   Visualization version   GIF version

Theorem yonedalem3a 17524
Description: Lemma for yoneda 17533. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y 𝑌 = (Yon‘𝐶)
yoneda.b 𝐵 = (Base‘𝐶)
yoneda.1 1 = (Id‘𝐶)
yoneda.o 𝑂 = (oppCat‘𝐶)
yoneda.s 𝑆 = (SetCat‘𝑈)
yoneda.t 𝑇 = (SetCat‘𝑉)
yoneda.q 𝑄 = (𝑂 FuncCat 𝑆)
yoneda.h 𝐻 = (HomF𝑄)
yoneda.r 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
yoneda.e 𝐸 = (𝑂 evalF 𝑆)
yoneda.z 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
yoneda.c (𝜑𝐶 ∈ Cat)
yoneda.w (𝜑𝑉𝑊)
yoneda.u (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
yoneda.v (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
yonedalem21.f (𝜑𝐹 ∈ (𝑂 Func 𝑆))
yonedalem21.x (𝜑𝑋𝐵)
yonedalem3a.m 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥))))
Assertion
Ref Expression
yonedalem3a (𝜑 → ((𝐹𝑀𝑋) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))) ∧ (𝐹𝑀𝑋):(𝐹(1st𝑍)𝑋)⟶(𝐹(1st𝐸)𝑋)))
Distinct variable groups:   𝑓,𝑎,𝑥, 1   𝐶,𝑎,𝑓,𝑥   𝐸,𝑎,𝑓   𝐹,𝑎,𝑓,𝑥   𝐵,𝑎,𝑓,𝑥   𝑂,𝑎,𝑓,𝑥   𝑆,𝑎,𝑓,𝑥   𝑄,𝑎,𝑓,𝑥   𝑇,𝑓   𝜑,𝑎,𝑓,𝑥   𝑌,𝑎,𝑓,𝑥   𝑍,𝑎,𝑓,𝑥   𝑋,𝑎,𝑓,𝑥
Allowed substitution hints:   𝑅(𝑥,𝑓,𝑎)   𝑇(𝑥,𝑎)   𝑈(𝑥,𝑓,𝑎)   𝐸(𝑥)   𝐻(𝑥,𝑓,𝑎)   𝑀(𝑥,𝑓,𝑎)   𝑉(𝑥,𝑓,𝑎)   𝑊(𝑥,𝑓,𝑎)

Proof of Theorem yonedalem3a
StepHypRef Expression
1 yonedalem21.f . . 3 (𝜑𝐹 ∈ (𝑂 Func 𝑆))
2 yonedalem21.x . . 3 (𝜑𝑋𝐵)
3 simpr 487 . . . . . . 7 ((𝑓 = 𝐹𝑥 = 𝑋) → 𝑥 = 𝑋)
43fveq2d 6674 . . . . . 6 ((𝑓 = 𝐹𝑥 = 𝑋) → ((1st𝑌)‘𝑥) = ((1st𝑌)‘𝑋))
5 simpl 485 . . . . . 6 ((𝑓 = 𝐹𝑥 = 𝑋) → 𝑓 = 𝐹)
64, 5oveq12d 7174 . . . . 5 ((𝑓 = 𝐹𝑥 = 𝑋) → (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) = (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹))
73fveq2d 6674 . . . . . 6 ((𝑓 = 𝐹𝑥 = 𝑋) → (𝑎𝑥) = (𝑎𝑋))
83fveq2d 6674 . . . . . 6 ((𝑓 = 𝐹𝑥 = 𝑋) → ( 1𝑥) = ( 1𝑋))
97, 8fveq12d 6677 . . . . 5 ((𝑓 = 𝐹𝑥 = 𝑋) → ((𝑎𝑥)‘( 1𝑥)) = ((𝑎𝑋)‘( 1𝑋)))
106, 9mpteq12dv 5151 . . . 4 ((𝑓 = 𝐹𝑥 = 𝑋) → (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥))) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))))
11 yonedalem3a.m . . . 4 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥))))
12 ovex 7189 . . . . 5 (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ∈ V
1312mptex 6986 . . . 4 (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))) ∈ V
1410, 11, 13ovmpoa 7305 . . 3 ((𝐹 ∈ (𝑂 Func 𝑆) ∧ 𝑋𝐵) → (𝐹𝑀𝑋) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))))
151, 2, 14syl2anc 586 . 2 (𝜑 → (𝐹𝑀𝑋) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))))
16 eqid 2821 . . . . . . 7 (𝑂 Nat 𝑆) = (𝑂 Nat 𝑆)
17 simpr 487 . . . . . . . 8 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹))
1816, 17nat1st2nd 17221 . . . . . . 7 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝑎 ∈ (⟨(1st ‘((1st𝑌)‘𝑋)), (2nd ‘((1st𝑌)‘𝑋))⟩(𝑂 Nat 𝑆)⟨(1st𝐹), (2nd𝐹)⟩))
19 yoneda.o . . . . . . . 8 𝑂 = (oppCat‘𝐶)
20 yoneda.b . . . . . . . 8 𝐵 = (Base‘𝐶)
2119, 20oppcbas 16988 . . . . . . 7 𝐵 = (Base‘𝑂)
22 eqid 2821 . . . . . . 7 (Hom ‘𝑆) = (Hom ‘𝑆)
232adantr 483 . . . . . . 7 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝑋𝐵)
2416, 18, 21, 22, 23natcl 17223 . . . . . 6 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (𝑎𝑋) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑋)))
25 yoneda.s . . . . . . 7 𝑆 = (SetCat‘𝑈)
26 yoneda.w . . . . . . . . 9 (𝜑𝑉𝑊)
27 yoneda.v . . . . . . . . . 10 (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
2827unssbd 4164 . . . . . . . . 9 (𝜑𝑈𝑉)
2926, 28ssexd 5228 . . . . . . . 8 (𝜑𝑈 ∈ V)
3029adantr 483 . . . . . . 7 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝑈 ∈ V)
31 eqid 2821 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
32 relfunc 17132 . . . . . . . . . . . 12 Rel (𝑂 Func 𝑆)
33 yoneda.y . . . . . . . . . . . . 13 𝑌 = (Yon‘𝐶)
34 yoneda.c . . . . . . . . . . . . 13 (𝜑𝐶 ∈ Cat)
35 yoneda.u . . . . . . . . . . . . 13 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
3633, 20, 34, 2, 19, 25, 29, 35yon1cl 17513 . . . . . . . . . . . 12 (𝜑 → ((1st𝑌)‘𝑋) ∈ (𝑂 Func 𝑆))
37 1st2ndbr 7741 . . . . . . . . . . . 12 ((Rel (𝑂 Func 𝑆) ∧ ((1st𝑌)‘𝑋) ∈ (𝑂 Func 𝑆)) → (1st ‘((1st𝑌)‘𝑋))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑋)))
3832, 36, 37sylancr 589 . . . . . . . . . . 11 (𝜑 → (1st ‘((1st𝑌)‘𝑋))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑋)))
3921, 31, 38funcf1 17136 . . . . . . . . . 10 (𝜑 → (1st ‘((1st𝑌)‘𝑋)):𝐵⟶(Base‘𝑆))
4039, 2ffvelrnd 6852 . . . . . . . . 9 (𝜑 → ((1st ‘((1st𝑌)‘𝑋))‘𝑋) ∈ (Base‘𝑆))
4125, 29setcbas 17338 . . . . . . . . 9 (𝜑𝑈 = (Base‘𝑆))
4240, 41eleqtrrd 2916 . . . . . . . 8 (𝜑 → ((1st ‘((1st𝑌)‘𝑋))‘𝑋) ∈ 𝑈)
4342adantr 483 . . . . . . 7 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((1st ‘((1st𝑌)‘𝑋))‘𝑋) ∈ 𝑈)
44 1st2ndbr 7741 . . . . . . . . . . . 12 ((Rel (𝑂 Func 𝑆) ∧ 𝐹 ∈ (𝑂 Func 𝑆)) → (1st𝐹)(𝑂 Func 𝑆)(2nd𝐹))
4532, 1, 44sylancr 589 . . . . . . . . . . 11 (𝜑 → (1st𝐹)(𝑂 Func 𝑆)(2nd𝐹))
4621, 31, 45funcf1 17136 . . . . . . . . . 10 (𝜑 → (1st𝐹):𝐵⟶(Base‘𝑆))
4746, 2ffvelrnd 6852 . . . . . . . . 9 (𝜑 → ((1st𝐹)‘𝑋) ∈ (Base‘𝑆))
4847, 41eleqtrrd 2916 . . . . . . . 8 (𝜑 → ((1st𝐹)‘𝑋) ∈ 𝑈)
4948adantr 483 . . . . . . 7 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((1st𝐹)‘𝑋) ∈ 𝑈)
5025, 30, 22, 43, 49elsetchom 17341 . . . . . 6 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑎𝑋) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑋)) ↔ (𝑎𝑋):((1st ‘((1st𝑌)‘𝑋))‘𝑋)⟶((1st𝐹)‘𝑋)))
5124, 50mpbid 234 . . . . 5 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (𝑎𝑋):((1st ‘((1st𝑌)‘𝑋))‘𝑋)⟶((1st𝐹)‘𝑋))
52 eqid 2821 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
53 yoneda.1 . . . . . . . 8 1 = (Id‘𝐶)
5420, 52, 53, 34, 2catidcl 16953 . . . . . . 7 (𝜑 → ( 1𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋))
5533, 20, 34, 2, 52, 2yon11 17514 . . . . . . 7 (𝜑 → ((1st ‘((1st𝑌)‘𝑋))‘𝑋) = (𝑋(Hom ‘𝐶)𝑋))
5654, 55eleqtrrd 2916 . . . . . 6 (𝜑 → ( 1𝑋) ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑋))
5756adantr 483 . . . . 5 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ( 1𝑋) ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑋))
5851, 57ffvelrnd 6852 . . . 4 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑎𝑋)‘( 1𝑋)) ∈ ((1st𝐹)‘𝑋))
5958fmpttd 6879 . . 3 (𝜑 → (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))):(((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)⟶((1st𝐹)‘𝑋))
60 yoneda.t . . . . 5 𝑇 = (SetCat‘𝑉)
61 yoneda.q . . . . 5 𝑄 = (𝑂 FuncCat 𝑆)
62 yoneda.h . . . . 5 𝐻 = (HomF𝑄)
63 yoneda.r . . . . 5 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
64 yoneda.e . . . . 5 𝐸 = (𝑂 evalF 𝑆)
65 yoneda.z . . . . 5 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
6633, 20, 53, 19, 25, 60, 61, 62, 63, 64, 65, 34, 26, 35, 27, 1, 2yonedalem21 17523 . . . 4 (𝜑 → (𝐹(1st𝑍)𝑋) = (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹))
6719oppccat 16992 . . . . . 6 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
6834, 67syl 17 . . . . 5 (𝜑𝑂 ∈ Cat)
6925setccat 17345 . . . . . 6 (𝑈 ∈ V → 𝑆 ∈ Cat)
7029, 69syl 17 . . . . 5 (𝜑𝑆 ∈ Cat)
7164, 68, 70, 21, 1, 2evlf1 17470 . . . 4 (𝜑 → (𝐹(1st𝐸)𝑋) = ((1st𝐹)‘𝑋))
7215, 66, 71feq123d 6503 . . 3 (𝜑 → ((𝐹𝑀𝑋):(𝐹(1st𝑍)𝑋)⟶(𝐹(1st𝐸)𝑋) ↔ (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))):(((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)⟶((1st𝐹)‘𝑋)))
7359, 72mpbird 259 . 2 (𝜑 → (𝐹𝑀𝑋):(𝐹(1st𝑍)𝑋)⟶(𝐹(1st𝐸)𝑋))
7415, 73jca 514 1 (𝜑 → ((𝐹𝑀𝑋) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))) ∧ (𝐹𝑀𝑋):(𝐹(1st𝑍)𝑋)⟶(𝐹(1st𝐸)𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3494  cun 3934  wss 3936  cop 4573   class class class wbr 5066  cmpt 5146  ran crn 5556  Rel wrel 5560  wf 6351  cfv 6355  (class class class)co 7156  cmpo 7158  1st c1st 7687  2nd c2nd 7688  tpos ctpos 7891  Basecbs 16483  Hom chom 16576  Catccat 16935  Idccid 16936  Homf chomf 16937  oppCatcoppc 16981   Func cfunc 17124  func ccofu 17126   Nat cnat 17211   FuncCat cfuc 17212  SetCatcsetc 17335   ×c cxpc 17418   1stF c1stf 17419   2ndF c2ndf 17420   ⟨,⟩F cprf 17421   evalF cevlf 17459  HomFchof 17498  Yoncyon 17499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-hom 16589  df-cco 16590  df-cat 16939  df-cid 16940  df-homf 16941  df-comf 16942  df-oppc 16982  df-func 17128  df-cofu 17130  df-nat 17213  df-fuc 17214  df-setc 17336  df-xpc 17422  df-1stf 17423  df-2ndf 17424  df-prf 17425  df-evlf 17463  df-curf 17464  df-hof 17500  df-yon 17501
This theorem is referenced by:  yonedalem3b  17529  yonedalem3  17530  yonedainv  17531
  Copyright terms: Public domain W3C validator