![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zlmsca | Structured version Visualization version GIF version |
Description: Scalar ring of a ℤ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.) |
Ref | Expression |
---|---|
zlmbas.w | ⊢ 𝑊 = (ℤMod‘𝐺) |
Ref | Expression |
---|---|
zlmsca | ⊢ (𝐺 ∈ 𝑉 → ℤring = (Scalar‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scaid 16187 | . . 3 ⊢ Scalar = Slot (Scalar‘ndx) | |
2 | 5re 11262 | . . . . 5 ⊢ 5 ∈ ℝ | |
3 | 5lt6 11367 | . . . . 5 ⊢ 5 < 6 | |
4 | 2, 3 | ltneii 10313 | . . . 4 ⊢ 5 ≠ 6 |
5 | scandx 16186 | . . . . 5 ⊢ (Scalar‘ndx) = 5 | |
6 | vscandx 16188 | . . . . 5 ⊢ ( ·𝑠 ‘ndx) = 6 | |
7 | 5, 6 | neeq12i 2986 | . . . 4 ⊢ ((Scalar‘ndx) ≠ ( ·𝑠 ‘ndx) ↔ 5 ≠ 6) |
8 | 4, 7 | mpbir 221 | . . 3 ⊢ (Scalar‘ndx) ≠ ( ·𝑠 ‘ndx) |
9 | 1, 8 | setsnid 16088 | . 2 ⊢ (Scalar‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉)) = (Scalar‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉)) |
10 | zringring 19994 | . . 3 ⊢ ℤring ∈ Ring | |
11 | 1 | setsid 16087 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ ℤring ∈ Ring) → ℤring = (Scalar‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉))) |
12 | 10, 11 | mpan2 709 | . 2 ⊢ (𝐺 ∈ 𝑉 → ℤring = (Scalar‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉))) |
13 | zlmbas.w | . . . 4 ⊢ 𝑊 = (ℤMod‘𝐺) | |
14 | eqid 2748 | . . . 4 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
15 | 13, 14 | zlmval 20037 | . . 3 ⊢ (𝐺 ∈ 𝑉 → 𝑊 = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉)) |
16 | 15 | fveq2d 6344 | . 2 ⊢ (𝐺 ∈ 𝑉 → (Scalar‘𝑊) = (Scalar‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉))) |
17 | 9, 12, 16 | 3eqtr4a 2808 | 1 ⊢ (𝐺 ∈ 𝑉 → ℤring = (Scalar‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1620 ∈ wcel 2127 ≠ wne 2920 〈cop 4315 ‘cfv 6037 (class class class)co 6801 5c5 11236 6c6 11237 ndxcnx 16027 sSet csts 16028 Scalarcsca 16117 ·𝑠 cvsca 16118 .gcmg 17712 Ringcrg 18718 ℤringzring 19991 ℤModczlm 20022 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-rep 4911 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-cnex 10155 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 ax-pre-mulgt0 10176 ax-addf 10178 ax-mulf 10179 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rmo 3046 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-int 4616 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-om 7219 df-1st 7321 df-2nd 7322 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-1o 7717 df-oadd 7721 df-er 7899 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 df-nn 11184 df-2 11242 df-3 11243 df-4 11244 df-5 11245 df-6 11246 df-7 11247 df-8 11248 df-9 11249 df-n0 11456 df-z 11541 df-dec 11657 df-uz 11851 df-fz 12491 df-struct 16032 df-ndx 16033 df-slot 16034 df-base 16036 df-sets 16037 df-ress 16038 df-plusg 16127 df-mulr 16128 df-starv 16129 df-sca 16130 df-vsca 16131 df-tset 16133 df-ple 16134 df-ds 16137 df-unif 16138 df-0g 16275 df-mgm 17414 df-sgrp 17456 df-mnd 17467 df-grp 17597 df-minusg 17598 df-subg 17763 df-cmn 18366 df-mgp 18661 df-ur 18673 df-ring 18720 df-cring 18721 df-subrg 18951 df-cnfld 19920 df-zring 19992 df-zlm 20026 |
This theorem is referenced by: zlmlmod 20044 zlmassa 20045 zlmclm 23083 nmmulg 30292 cnzh 30294 rezh 30295 |
Copyright terms: Public domain | W3C validator |