MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zrhpsgnelbas Structured version   Visualization version   GIF version

Theorem zrhpsgnelbas 19921
Description: Embedding of permutation signs into a ring results in an element of the ring. (Contributed by AV, 1-Jan-2019.)
Hypotheses
Ref Expression
zrhpsgnelbas.p 𝑃 = (Base‘(SymGrp‘𝑁))
zrhpsgnelbas.s 𝑆 = (pmSgn‘𝑁)
zrhpsgnelbas.y 𝑌 = (ℤRHom‘𝑅)
Assertion
Ref Expression
zrhpsgnelbas ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑌‘(𝑆𝑄)) ∈ (Base‘𝑅))

Proof of Theorem zrhpsgnelbas
StepHypRef Expression
1 zrhpsgnelbas.p . . . 4 𝑃 = (Base‘(SymGrp‘𝑁))
2 zrhpsgnelbas.s . . . 4 𝑆 = (pmSgn‘𝑁)
31, 2psgnran 17916 . . 3 ((𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑆𝑄) ∈ {1, -1})
433adant1 1077 . 2 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑆𝑄) ∈ {1, -1})
5 elpri 4188 . . 3 ((𝑆𝑄) ∈ {1, -1} → ((𝑆𝑄) = 1 ∨ (𝑆𝑄) = -1))
6 zrhpsgnelbas.y . . . . . . . 8 𝑌 = (ℤRHom‘𝑅)
7 eqid 2620 . . . . . . . 8 (1r𝑅) = (1r𝑅)
86, 7zrh1 19842 . . . . . . 7 (𝑅 ∈ Ring → (𝑌‘1) = (1r𝑅))
9 eqid 2620 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
109, 7ringidcl 18549 . . . . . . 7 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
118, 10eqeltrd 2699 . . . . . 6 (𝑅 ∈ Ring → (𝑌‘1) ∈ (Base‘𝑅))
12113ad2ant1 1080 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑌‘1) ∈ (Base‘𝑅))
13 fveq2 6178 . . . . . 6 ((𝑆𝑄) = 1 → (𝑌‘(𝑆𝑄)) = (𝑌‘1))
1413eleq1d 2684 . . . . 5 ((𝑆𝑄) = 1 → ((𝑌‘(𝑆𝑄)) ∈ (Base‘𝑅) ↔ (𝑌‘1) ∈ (Base‘𝑅)))
1512, 14syl5ibr 236 . . . 4 ((𝑆𝑄) = 1 → ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑌‘(𝑆𝑄)) ∈ (Base‘𝑅)))
16 neg1z 11398 . . . . . . . 8 -1 ∈ ℤ
17 eqid 2620 . . . . . . . . 9 (.g𝑅) = (.g𝑅)
186, 17, 7zrhmulg 19839 . . . . . . . 8 ((𝑅 ∈ Ring ∧ -1 ∈ ℤ) → (𝑌‘-1) = (-1(.g𝑅)(1r𝑅)))
1916, 18mpan2 706 . . . . . . 7 (𝑅 ∈ Ring → (𝑌‘-1) = (-1(.g𝑅)(1r𝑅)))
20 ringgrp 18533 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
2116a1i 11 . . . . . . . 8 (𝑅 ∈ Ring → -1 ∈ ℤ)
229, 17mulgcl 17540 . . . . . . . 8 ((𝑅 ∈ Grp ∧ -1 ∈ ℤ ∧ (1r𝑅) ∈ (Base‘𝑅)) → (-1(.g𝑅)(1r𝑅)) ∈ (Base‘𝑅))
2320, 21, 10, 22syl3anc 1324 . . . . . . 7 (𝑅 ∈ Ring → (-1(.g𝑅)(1r𝑅)) ∈ (Base‘𝑅))
2419, 23eqeltrd 2699 . . . . . 6 (𝑅 ∈ Ring → (𝑌‘-1) ∈ (Base‘𝑅))
25243ad2ant1 1080 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑌‘-1) ∈ (Base‘𝑅))
26 fveq2 6178 . . . . . 6 ((𝑆𝑄) = -1 → (𝑌‘(𝑆𝑄)) = (𝑌‘-1))
2726eleq1d 2684 . . . . 5 ((𝑆𝑄) = -1 → ((𝑌‘(𝑆𝑄)) ∈ (Base‘𝑅) ↔ (𝑌‘-1) ∈ (Base‘𝑅)))
2825, 27syl5ibr 236 . . . 4 ((𝑆𝑄) = -1 → ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑌‘(𝑆𝑄)) ∈ (Base‘𝑅)))
2915, 28jaoi 394 . . 3 (((𝑆𝑄) = 1 ∨ (𝑆𝑄) = -1) → ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑌‘(𝑆𝑄)) ∈ (Base‘𝑅)))
305, 29syl 17 . 2 ((𝑆𝑄) ∈ {1, -1} → ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑌‘(𝑆𝑄)) ∈ (Base‘𝑅)))
314, 30mpcom 38 1 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑌‘(𝑆𝑄)) ∈ (Base‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  w3a 1036   = wceq 1481  wcel 1988  {cpr 4170  cfv 5876  (class class class)co 6635  Fincfn 7940  1c1 9922  -cneg 10252  cz 11362  Basecbs 15838  Grpcgrp 17403  .gcmg 17521  SymGrpcsymg 17778  pmSgncpsgn 17890  1rcur 18482  Ringcrg 18528  ℤRHomczrh 19829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-addf 10000  ax-mulf 10001
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-xor 1463  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-ot 4177  df-uni 4428  df-int 4467  df-iun 4513  df-iin 4514  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-tpos 7337  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-2o 7546  df-oadd 7549  df-er 7727  df-map 7844  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-card 8750  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-xnn0 11349  df-z 11363  df-dec 11479  df-uz 11673  df-rp 11818  df-fz 12312  df-fzo 12450  df-seq 12785  df-exp 12844  df-hash 13101  df-word 13282  df-lsw 13283  df-concat 13284  df-s1 13285  df-substr 13286  df-splice 13287  df-reverse 13288  df-s2 13574  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-mulr 15936  df-starv 15937  df-tset 15941  df-ple 15942  df-ds 15945  df-unif 15946  df-0g 16083  df-gsum 16084  df-mre 16227  df-mrc 16228  df-acs 16230  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-mhm 17316  df-submnd 17317  df-grp 17406  df-minusg 17407  df-mulg 17522  df-subg 17572  df-ghm 17639  df-gim 17682  df-oppg 17757  df-symg 17779  df-pmtr 17843  df-psgn 17892  df-cmn 18176  df-mgp 18471  df-ur 18483  df-ring 18530  df-cring 18531  df-rnghom 18696  df-subrg 18759  df-cnfld 19728  df-zring 19800  df-zrh 19833
This theorem is referenced by:  zrhcopsgnelbas  19922  m2detleib  20418  mdetpmtr1  29863
  Copyright terms: Public domain W3C validator