Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconstmpt Unicode version

Theorem fconstmpt 4554
 Description: Representation of a constant function using the mapping operation. (Note that cannot appear free in .) (Contributed by NM, 12-Oct-1999.) (Revised by Mario Carneiro, 16-Nov-2013.)
Assertion
Ref Expression
fconstmpt
Distinct variable groups:   ,   ,

Proof of Theorem fconstmpt
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 velsn 3512 . . . 4
21anbi2i 450 . . 3
32opabbii 3963 . 2
4 df-xp 4513 . 2
5 df-mpt 3959 . 2
63, 4, 53eqtr4i 2146 1
 Colors of variables: wff set class Syntax hints:   wa 103   wceq 1314   wcel 1463  csn 3495  copab 3956   cmpt 3957   cxp 4505 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097 This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-v 2660  df-sn 3501  df-opab 3958  df-mpt 3959  df-xp 4513 This theorem is referenced by:  fconst  5286  fcoconst  5557  fmptsn  5575  fconstmpo  5832  ofc12  5968  caofinvl  5970  xpexgALT  5997  inftonninf  10165  fser0const  10240  cnmptc  12357  dvexp  12750  dvexp2  12751  dvmptidcn  12753  dvmptccn  12754  dvef  12762  nninfall  13038  nninfsellemeqinf  13046  nninffeq  13050  exmidsbthrlem  13051
 Copyright terms: Public domain W3C validator