| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2m1e1 | Unicode version | ||
| Description: 2 - 1 = 1. The result is on the right-hand-side to be consistent with similar proofs like 4p4e8 9136. (Contributed by David A. Wheeler, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| 2m1e1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 9061 |
. 2
| |
| 2 | ax-1cn 7972 |
. 2
| |
| 3 | 1p1e2 9107 |
. 2
| |
| 4 | 1, 2, 2, 3 | subaddrii 8315 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-sub 8199 df-2 9049 |
| This theorem is referenced by: 1e2m1 9109 1mhlfehlf 9209 subhalfhalf 9226 addltmul 9228 xp1d2m1eqxm1d2 9244 nn0lt2 9407 nn0le2is012 9408 zeo 9431 fzo0to2pr 10294 bcn2 10856 maxabslemlub 11372 geo2sum2 11680 ege2le3 11836 cos2tsin 11916 cos12dec 11933 odd2np1 12038 oddp1even 12041 mod2eq1n2dvds 12044 oddge22np1 12046 prmdiv 12403 hoverb 14884 sin0pilem1 15017 cos2pi 15040 cosq34lt1 15086 lgslem4 15244 gausslemma2dlem1a 15299 lgseisenlem1 15311 2lgslem3c 15336 ex-fl 15371 |
| Copyright terms: Public domain | W3C validator |