![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2m1e1 | Unicode version |
Description: 2 - 1 = 1. The result is on the right-hand-side to be consistent with similar proofs like 4p4e8 9127. (Contributed by David A. Wheeler, 4-Jan-2017.) |
Ref | Expression |
---|---|
2m1e1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 9053 |
. 2
![]() ![]() ![]() ![]() | |
2 | ax-1cn 7965 |
. 2
![]() ![]() ![]() ![]() | |
3 | 1p1e2 9099 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 2, 3 | subaddrii 8308 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-setind 4569 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-sub 8192 df-2 9041 |
This theorem is referenced by: 1e2m1 9101 1mhlfehlf 9200 subhalfhalf 9217 addltmul 9219 xp1d2m1eqxm1d2 9235 nn0lt2 9398 nn0le2is012 9399 zeo 9422 fzo0to2pr 10285 bcn2 10835 maxabslemlub 11351 geo2sum2 11658 ege2le3 11814 cos2tsin 11894 cos12dec 11911 odd2np1 12014 oddp1even 12017 mod2eq1n2dvds 12020 oddge22np1 12022 prmdiv 12373 hoverb 14802 sin0pilem1 14916 cos2pi 14939 cosq34lt1 14985 lgslem4 15119 gausslemma2dlem1a 15174 lgseisenlem1 15186 ex-fl 15217 |
Copyright terms: Public domain | W3C validator |