![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2m1e1 | Unicode version |
Description: 2 - 1 = 1. The result is on the right-hand-side to be consistent with similar proofs like 4p4e8 9078. (Contributed by David A. Wheeler, 4-Jan-2017.) |
Ref | Expression |
---|---|
2m1e1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 9004 |
. 2
![]() ![]() ![]() ![]() | |
2 | ax-1cn 7918 |
. 2
![]() ![]() ![]() ![]() | |
3 | 1p1e2 9050 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 2, 3 | subaddrii 8260 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-setind 4548 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-addcom 7925 ax-addass 7927 ax-distr 7929 ax-i2m1 7930 ax-0id 7933 ax-rnegex 7934 ax-cnre 7936 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-opab 4077 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-iota 5190 df-fun 5230 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-sub 8144 df-2 8992 |
This theorem is referenced by: 1e2m1 9052 1mhlfehlf 9151 addltmul 9169 xp1d2m1eqxm1d2 9185 nn0lt2 9348 nn0le2is012 9349 zeo 9372 fzo0to2pr 10232 bcn2 10758 maxabslemlub 11230 geo2sum2 11537 ege2le3 11693 cos2tsin 11773 cos12dec 11789 odd2np1 11892 oddp1even 11895 mod2eq1n2dvds 11898 oddge22np1 11900 prmdiv 12249 sin0pilem1 14555 cos2pi 14578 cosq34lt1 14624 lgslem4 14757 lgseisenlem1 14803 ex-fl 14830 |
Copyright terms: Public domain | W3C validator |