ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  7t3e21 Unicode version

Theorem 7t3e21 9298
Description: 7 times 3 equals 21. (Contributed by Mario Carneiro, 19-Apr-2015.)
Assertion
Ref Expression
7t3e21  |-  ( 7  x.  3 )  = ; 2
1

Proof of Theorem 7t3e21
StepHypRef Expression
1 7nn0 9006 . 2  |-  7  e.  NN0
2 2nn0 9001 . 2  |-  2  e.  NN0
3 df-3 8787 . 2  |-  3  =  ( 2  +  1 )
4 7t2e14 9297 . 2  |-  ( 7  x.  2 )  = ; 1
4
5 1nn0 9000 . . 3  |-  1  e.  NN0
6 4nn0 9003 . . 3  |-  4  e.  NN0
7 eqid 2139 . . 3  |- ; 1 4  = ; 1 4
8 1p1e2 8844 . . 3  |-  ( 1  +  1 )  =  2
91nn0cni 8996 . . . 4  |-  7  e.  CC
106nn0cni 8996 . . . 4  |-  4  e.  CC
11 7p4e11 9264 . . . 4  |-  ( 7  +  4 )  = ; 1
1
129, 10, 11addcomli 7914 . . 3  |-  ( 4  +  7 )  = ; 1
1
135, 6, 1, 7, 8, 5, 12decaddci 9249 . 2  |-  (; 1 4  +  7 )  = ; 2 1
141, 2, 3, 4, 134t3lem 9285 1  |-  ( 7  x.  3 )  = ; 2
1
Colors of variables: wff set class
Syntax hints:    = wceq 1331  (class class class)co 5774   1c1 7628    x. cmul 7632   2c2 8778   3c3 8779   4c4 8780   7c7 8783  ;cdc 9189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-setind 4452  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-cnre 7738
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-sub 7942  df-inn 8728  df-2 8786  df-3 8787  df-4 8788  df-5 8789  df-6 8790  df-7 8791  df-8 8792  df-9 8793  df-n0 8985  df-dec 9190
This theorem is referenced by:  7t4e28  9299
  Copyright terms: Public domain W3C validator